Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the USA counties data extracted from the 2019 Coronavirus data hub operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Sources:1Point3Arces: https://coronavirus.1point3acres.com/enUS CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Enrichmentthe official FIPS codes are available and should be used for joins or geojoins needs.Terms of Use:This data set is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) by the Johns Hopkins University on behalf of its Center for Systems Science in Engineering. Copyright Johns Hopkins University 2020.Attribute the data as the "COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University" or "JHU CSSE COVID-19 Data" for short, and the url: https://github.com/CSSEGISandData/COVID-19.For publications that use the data, please cite the following publication: "Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1"
Facebook
Twitterhttps://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, USA, North America had 1,151 new cases, 7 deaths and 10,109 recoveries.
Facebook
TwitterThe COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Coronavirus a nivel diario - Número de casos en lo que va de año para Israel como país
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterThis dataset provides information on the total number of COVID-19 cases and deaths as well as incident rates per 100,000 persons for each region in the United States. Based off of the Johns Hopkins Covid-19 Dashboard.Last Updated: November 21, 2022
Facebook
TwitterAs the American population is advised to stay at home, self-isolate, or to shelter in place, online engagement during the coronavirus outbreak in the United States has increased dramatically. As of March 19, online gaming traffic has increased by ** percent week-over-week. This is hardly surprising, as gaming was one of the most common at-home media activities during the coronavirus in the United States.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterNEW: We are publishing the data behind our excess deaths tracker in order to provide researchers and the public with a better record of the true toll of the pandemic. This data is compiled from official national and municipal data for 24 countries. See the data and documentation in the excess-deaths/ directory.
[ U.S. Data (Raw CSV) | U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
We are providing two sets of data with cumulative counts of coronavirus cases and deaths: one with our most current numbers for each geography and another with historical data showing the tally for each day for each geography.
The historical data files are at the top level of the directory and contain data up to, but not including the current day. The live data files are in the live/ directory.
A key difference between the historical and live files is that the numbers in the historical files are the final counts at the end of each day, while the live files have figures that may be a partial count released during the day but cannot necessarily be considered the final, end-of-day tally..
The historical and live data are released in three files, one for each of these geographic levels: U.S., states and counties.
Each row of data reports the cumulative number of coronavirus cases and deaths based on our best reporting up to the moment we publish an update. Our counts include both laboratory confirmed and probable cases using criteria that were developed by states and the federal government. Not all geographies are reporting probable cases and yet others are providing confirmed and probable as a single total. Please read here for a full discussion of this issue.
We do our best to revise earlier entries in the data when we receive new information. If a county is not listed for a date, then there were zero reported confirmed cases and deaths.
State and county files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
The daily number of cases and deaths nationwide, including states, U.S. territories and the District of Columbia, can be found in the us.csv file. (Raw CSV file here.)
date,cases,deaths
2020-01-21,1,0
...
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,c...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19 data for United States of America from 2020-01-22 to 2023-03-09, including tot_confirmed, tot_deaths.
Files:
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
[ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.
Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths
2020-01-21,Snohomish,Washington,53061,1,0
...
In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their...
Facebook
TwitterIn the week running from March 9 to 15, 2020, Fox News averaged **** million viewers in primetime, and CNN outperformed MSNBC with its primetime audience of **** million. Comparing these figures to the corresponding week of the previous year, primetime viewership is noticeably higher among all three of the major cable news networks. Cable news network viewership varies monthly, though Fox News generally comes out on top, but the TV industry as a whole will be keeping a close eye on developments and ratings in spring 2020 in light of the coronavirus outbreak. The pandemic which is driving people indoors as they self-isolate, contrary to normal spring behaviour which tends to send viewers outdoors and away from their television sets.
Important to note here is that on March 11, 2020, the World Health Organization announced that the coronavirus was a global pandemic, right in the middle of the week in March 2020 presented in the graph. In that week, Fox News averaged over *** million more primetime viewers than in the corresponding period in 2019, and CNN's primetime audience was around ***** times higher.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains Covid-19 data of all the states in USA as on September 15, 2023
Link : https://www.worldometers.info/coronavirus/country/us/
Link : https://www.kaggle.com/anandhuh/datasets
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
date,cases,deaths 2020-01-21,1,0
The New York Times data
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides information related to the outbreak of COVID-19 disease in the United States
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Covid cases per month in the USA, March, 2023 The most recent value is 678002 new Covid cases as of March 2023, a decline compared to the previous value of 1085170 new Covid cases. Historically, the average for the USA from February 2020 to March 2023 is 2701389 new Covid cases. The minimum of 61 new Covid cases was recorded in February 2020, while the maximum of 20400000 new Covid cases was reached in January 2022. | TheGlobalEconomy.com
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
Data represents all vaccine partners including jurisdictional partner clinics, retail pharmacies, long-term care facilities, dialysis centers, Federal Emergency Management Agency and Health Resources and Services Administration partner sites, and federal entity facilities.
● Dataset publisher: Centers for Disease Control and Prevention ● Category: Vaccinations
This dataset was obtained from data.gov website
My main inspiration for sharing of this dataset is to analyze the trend over age and sex during "COVID-19" vaccination.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Data is obtained from COVID-19 Tracking project and NYTimes. Sincere thanks to them for making it available to the public.
Coronaviruses are a large family of viruses which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19 - World Health Organization
The number of new cases are increasing day by day around the world. This dataset has information from 50 US states and the District of Columbia at daily level.
LICENSE:
Please refer here
Apache License 2.0
A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code. For counties dataset, please refer here
Content us_states_covid19_daily.csv
This dataset has number of tests conducted in each state at daily level. Column descriptions are
date - date of observation state - US state 2 digit code positive - number of tests with positive results negative - number of tests with negative results pending - number of test with pending results death - number of deaths total - total number of tests
Acknowledgements Sincere thanks to COVID-19 Tracking project from which the data is obtained.
Sincere thanks to NYTimes for the counties dataset
There is a nice tableau public dashboard on the data. Images for this dataset is obtained from the same. Thank you.
Inspiration Some of the questions that could be answered are
How is the spread over time to various states Change in number of people tested over time
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.