Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterDESCRIPTION
Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000
SUMMARY Updates April 9, 2020 The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County. April 20, 2020 Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well. April 29, 2020 The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
Overview The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Queries Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
Interactive Embed Code
Caveats This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website. In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules. In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county" This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members. Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates. Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey. The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories --...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.
This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):
Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.
Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.
Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.
These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].
The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.
Facebook
TwitterIn summer 2020, SARS-CoV-2 was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus at the time. Among the samples which could be further characterized, 126 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2) were identified. Moreover, at least 10% (n=27) of the corona-virus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild animals tested on mink farms and raise the possibility that commercial animal husbandry operations could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses. Figure 1. Phylogenetic relationships of the identified coronaviruses from mink and other animals from mink farms in Utah. The four genera of coronaviruses are highlighted in different colors. AlphaCoV, alkphacoronavirus; BetaCoV, betacoronavirus; DeltaCoV, deltacoronaviruses; and GammaCoV, gammacoronavirus. Type species for the currently recognized subgenera are annotated according to the nomenclature scheme used in this manuscript with the addition of the ICTV subgenus. Additional viruses, including the closest GenBank entry as identified by the BLAST tool, were included to help delineate relationship. Red circles are viruses identified in this study. Panel A. Full phylogenetic tree (A full-size image is included in Supplementary Figure 1). Red arrows designate the group of nearly identical Utah mink coronavirus strains collapsed into the colored triangle in Panel B. Table 1. Coronavirus distribution among species tested. The species are listed by their common names; Total, the total number of animals of each species tested; Negative, number of each species with no coronavirus detected among the tissues tested; Positive, number of animals positive for coronavirus in at least one tissue; % Pos, percentage of coronavirus positives in each species. Table 2. Detailed tissue panel tested for SARS-CoV-2. The distribution of SARS-CoV-2 RNA detection in the first 96 animals is listed. Tissue, tissue or tissue pools received; Total, total number tested in each category; Negative, number of N1 RT-PCR negatives; Posi-tives, number of N1 RT-PCR positives; % Pos, percentage of tissues positive for corona-virus. Table 3. Summary of coronaviruses identified. The distribution of coronaviruses detected and characterized according to their host is listed. Species, common name of animal species tested; AlphaCoV, number of alphacoronaviruses identified; BetaCoV, number of betacoronaviruses identified; Sequenced, number of viruses identified by sequencing, Unchar, number of coronavirus-positive samples not further characterized. Table 4. SARS-CoV-2 coinfections identified in Utah mammals. The individual animals that are both SARS-CoV-2 positive and infected with a second coronavirus are listed. Animal ID, Unique animal identification number; Common name, common name of animal; Scientific name, scientific name of animal; Sex, F, female, M, male. Unk, un-known; Age, A adult, J juvenile, Unk, unknown; SARS-CoV-2, Neg-N1 RT-PCR nega-tive, Pos-N1 RT-PCR positive, Second strain, genus and common name of the coronavirus, Pan-CoV RT-PCR Equivocal, sample is PCR positive but not further characterized. Supplementary Figure 1. Phylogenetic relationships of the identified coronaviruses from mink farms in Utah. The four genera of coronaviruses are highlighted in different colors. AlphaCoV, alkphacoronavirus; BetaCoV, betacoronavirus; DeltaCoV, deltacoronaviruses; and GammaCoV, gammacoronavirus. Type species for the currently recognized subgenera are annotated according to the nomenclature scheme used in this manuscript with the addition of the ICTV subgenus. Additional viruses, including the closest GenBank entry as identified by the BLAST tool were included to help delineate relationship. Red circles are viruses identified in this study. Supplementary Table 1. List of animals and tissues sampled and RT-PCR test results. Animal ID, unique identifier for each animal; Specimen ID, unique identifier for each tissue; Common name, common name of the animal species; Scientific name, scientific name of the animal species, Sex, F-female, M-male, UNK-unknown; Age, J-juvenile, A-adult, UNK-unknown; Tissue, organ or organ pools tested; Tissue study, X denotes the animals and tissues used in the tissue distribution sub-study; N1 PCR, Ct values from the CDC N1 assay; Pan-CoV PCR, Neg, negative, Pos, positive, Equiv, equivocal; * wild mink. Supplementary Table 2. Summary of coronavirus test results. Animal ID, unique identifier for each animal; Common name, common name of the animal species; Scientific name, scientific name of the animal species, Sex, F-female, M-male, UNK-unknown; Age, J-juvenile, A-adult, UNK-unknown; CoV, Neg-negative, Pos-positive on either one or both RT-PCR tests; SARS-CoV-2, animals positive in the CDC N1 test; AlphaCoV, the tissues positive for alphacoronavirus for each animal is listed; BetaCoV, the tissues positive for betacoronavirus for each animal is listed; C-colon, C/R-colon/rectum pool, H-heart, L-lung, L/S-live/spleen pool, S int-small intestine; Co-infections, Y-yes; PCR only, Y-yes; Virus identified by sequencing, brief name of virus identified.
Facebook
TwitterThe following report outlines the workflow used to optimize your Find Hot Spots result:Initial Data Assessment.There were 2933 valid input features.There were 3108 valid input aggregation areas.There were 3108 valid input aggregation areas.There were 66 outlier locations; these will not be used to compute the optimal fixed distance band.Incident AggregationAnalysis was based on the number of points in each polygon cell.Analysis was performed on all aggregation areas.The aggregation process resulted in 3108 weighted areas.Incident Count Properties:Min0.0000Max0.0015Mean0.0001Std. Dev.0.0001Scale of AnalysisThe optimal fixed distance band was based on the average distance to 30 nearest neighbors: 150682.0000 Meters.Hot Spot AnalysisThere are 865 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.OutputRed output features represent hot spots where high incident counts cluster.Blue output features represent cold spots where low incident counts cluster.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the influence of mutations in the SARS-CoV-2 gene on clinical outcomes is critical for treatment and prevention. Here, we analyzed all high-coverage complete SARS-CoV-2 sequences from GISAID database from January 1, 2020, to January 1, 2021, to mine the mutation hotspots associated with clinical outcome and developed a model to predict the clinical outcome in different epidemic strains. Exploring the cause of mutation based on RNA-dependent RNA polymerase (RdRp) and RNA-editing enzyme, mutation was more likely to occur in severe and mild cases than in asymptomatic cases, especially A > G, C > T, and G > A mutations. The mutations associated with asymptomatic outcome were mainly in open reading frame 1ab (ORF1ab) and N genes; especially R6997P and V30L mutations occurred together and were correlated with asymptomatic outcome with high prevalence. D614G, Q57H, and S194L mutations were correlated with mild and severe outcome with high prevalence. Interestingly, the single-nucleotide variant (SNV) frequency was higher with high percentage of nt14408 mutation in RdRp in severe cases. The expression of ADAR and APOBEC was associated with clinical outcome. The model has shown that the asymptomatic percentage has increased over time, while there is high symptomatic percentage in Alpha, Beta, and Gamma. These findings suggest that mutation in the SARS-CoV-2 genome may have a direct association with clinical outcomes and pandemic. Our result and model are helpful to predict the prevalence of epidemic strains and to further study the mechanism of mutation causing severe disease.
Facebook
TwitterBackgroundThe coronavirus disease 2019 (COVID-19) pandemic is disrupting routine medical care of cancer patients, including those who have cancer or are undergoing cancer screening. In this study, breast cancer management during the COVID-19 pandemic (BCMP) is reviewed, and the research trends of BCMP are evaluated by quantitative and qualitative evaluation.MethodsIn this study, published studies relating to BCMP from 1 January 2020 to 1 April 2022 were searched from the Web of Science database (WoS). Bibliometric indicators consisted of publications, research hotspots, keywords, authors, journals, institutions, nations, and h-index.ResultsA total of 182 articles investigating BCMP were searched. The United States of America and the University of Rome Tor Vergata were the nation and the institution with the most publications on BCMP. The first three periodicals with leading published BCMP studies were Breast Cancer Research and Treatment, Breast, and In Vivo. Buonomo OC was the most prolific author in this field, publishing nine articles (9/182, 4.94%). The co-keywords analysis of BCMP suggests that the top hotspots and trends in research are screening, surgery, rehabilitation, emotion, diagnosis, treatment, and vaccine management of breast cancer during the pandemic. The hotspot words were divided into six clusters, namely, screening for breast cancer patients in the pandemic, breast cancer surgery in the pandemic, recovery of breast cancer patients in the pandemic, motion effect of the outbreak on breast cancer patients, diagnosis and treatment of breast cancer patients in the pandemic, and vaccination management for breast cancer patients during a pandemic.ConclusionBCMP has received attention from scholars in many nations over the last 3 years. This study revealed significant contributions to BCMP research by nations, institutions, scholars, and journals. The stratified clustering study provided the current status and future trends of BCMP to help physicians with the diagnosis and treatment of breast cancer through the pandemic, and provide a reference for in-depth clinical studies on BCMP.
Facebook
TwitterEpidemiologic COVID-19 data for São Paulo State capital and hotspots cities for disease introduction and spread on April 18th (see Fig 5).
Facebook
TwitterHow to Read the map.This map allows you to visualize the trends over time and cases, recoveries, deaths and testing at the regional health unit. The Map shows the relative state of the COVID-19 outbreak in each region. Colour (red to green) shows the time since a new reported case.
7 Day Hot Spots
The map highlights regions with an active outbreak with a "glowing ball". The size of the ball reflects the average number of new cases in the past 7 days as a rate per 100K population.
High
Low
Important InformationNot all data is reported for all regional health units. Data sources are consulted every 24 hours, however not all organizations report on a daily bases. As this data is cumulative, values carry-forward if updates are not provided. Values can go down due to corrected errors as reported. Data SourcesThe source of the data for each regional health unit is listed in the "SourceURL" field.
Looking for the raw data? You can find it here.
Facebook
TwitterThis feature contain several data layers: 1 depicts the up-to-date COVID-19 cases for Nigeria by states and the 2 shows population density of Nigeria by Local Government Areas; and these were superimposed on each other for easy comparison; 3 is a map of the statistically significant population hot spot and cold spot in Nigeria. All these datasets constitute this well presented COVID-19 dashboard for monitoring Nigeria cases. Data sources include NCDC, WHO, and Africa Geoportal. The COVID-19 data is updated at least once per day, following NCDC update timeline. This layer is created and maintained by DR. NKEKI F. N. and his team (Eugene .A. Atakpiri and Akinde .N. Kolawole) to Support NCDC to fight against the spread of COVID-19 in Nigeria. This layer is opened to the public and free to share. Contact Info: Phone: +23408063131159Email: nkekifndidi@gmail.com
Facebook
TwitterBy Kristen Honey, Chief Data Scientist and COVID-19 Diagnostics Informatics Lead, COVID-19 Testing and Diagnostics Working Group (TDWG); Joshua Prasad, Director of Health Equity Innovation, Office of the Chief Data Officer (OCDO), Jack Bastian, Data Engineer, HHS Protect, Office of the Chief Data Officer (OCDO)
Facebook
TwitterBy Dan Winchester [source]
This dataset contains the total number of confirmed COVID-19 cases in each English Upper Tier Local Authority over the past eight days. Aggregated from Public Health England data, this dataset provides unprecedented insight into how quickly the virus has been able to spread in local communities throughout England. Despite testing limitations, understanding these localized patterns of infection can help inform important public health decisions by local authorities and healthcare workers alike.
It is essential to bear in mind that this data is likely an underestimation of true infection rates due to limited testing -- it is critical not to underestimate the risk the virus poses on a local scale! Use this dataset at your own discretion with caution and care; consider supplementing it with other health and socio-economic metrics for a holistic picture of regional trends over time.
This dataset features information surrounding GSS codes and names as well as total numbers of recorded COVID-19 cases per English Upper Tier Local Authority on January 5th 2023 (TotalCases_2023-01-05)
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Comparing the total cases in each local authority to population density of the region, to identify areas with higher incidence of virus
- Tracking changes in total cases over a period of time to monitor trend shifts and detect possible outbreak hotspots
- Establishing correlations between the spread of COVID-19 and other non-coronavirus related health issues, such as mental health or cardiovascular risk factors
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: utla_by_day.csv | Column name | Description | |:--------------------------|:------------------------------------------------------------------------------------------------------| | GSS_CD | Government Statistical Service code for the local authority. (String) | | GSS_NM | Name of the local authority. (String) | | TotalCases_2023-01-05 | Total number of confirmed COVID-19 cases in the local authority on the 5th of January 2023. (Integer) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Dan Winchester.
Facebook
TwitterThis dataset contains large files which can be used to reproduce the results in McDonald, D.J., Bien, J., Green, A., Hu, A.J., DeFries, N., Hyun, S., Oliveira, N.L., Sharpnack, J., Tang, J., Tibshirani, R., Ventura, V., Wasserman, L., and Tibshirani, R.J. “Can Auxiliary Indicators Improve COVID-19 Forecasting and Hotspot Prediction?,” Proceedings of the National Academy of Sciences, 2021. https://doi.org/10.1101/2021.06.22.21259346 Short-term forecasts of traditional streams from public health reporting (such as cases, hospitalizations, and deaths) are a key input to public health decision-making during a pandemic. Since early 2020, our research group has worked with data partners to collect, curate, and make publicly available numerous real-time COVID-19 indicators, providing multiple views of pandemic activity in the U.S. This paper studies the utility of five such indicators---derived from de-identified medical insurance claims, self-reported symptoms from online surveys, and COVID-related Google search activity---from a forecasting perspective. For each indicator, we ask whether its inclusion in an autoregressive (AR) model leads to improved predictive accuracy relative to the same model excluding it. Such an AR model, without external features, is already competitive with many top COVID-19 forecasting models in use today. Our analysis reveals that (a) inclusion of each of these five indicators improves on the overall predictive accuracy of the AR model; (b) predictive gains are in general most pronounced during times in which COVID cases are trending in "flat" or "down" directions; (c) one indicator, based on Google searches, seems to be particularly helpful during "up" trends. Complete descriptions as well as code are available from https://github.com/cmu-delphi/covidcast-pnas/ and are permanently accessible at https://doi.org/10.5281/zenodo.5639567. This material is based on work supported by gifts from Facebook, Google.org, the McCune Foundation, and Optum.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
In response to the impacts of COVID-19, Drive-In WiFi Hotspots provide free temporary, emergency internet access for Washingtonians who do not have broadband service to their homes.
Access is available to all residents with specific emphasis on remote learning for students. Additionally, this service can be used for job searches, telehealth, telework, unemployment filing, and census participation.
The locations listed on this map represent new Drive-In WiFi Hotspot sites located at Washington State University Extension locations, as well as new and existing Washington State Library Drive-In WiFi Hotspots.
Launching primarily as parking lot hotspots in response to the COVID-19 pandemic, the free community Wi-Fi is accessible regardless of how users arrive at the locations. Some sites also offer indoor public access during business hours. Everyone using the sites – outside or inside – must practice social distancing and hygiene precautions, including staying in your vehicle or at least six feet from other users and wearing a mask if necessary.
Each hotspot will have its own security protocol. Some will be open and others will have Children’s Internet Protection Act (CIPA) safe security installed.
Broadband equity is not just a rural challenge. The drive-In Wi-Fi hotspot project addresses underserved and economically disadvantaged communities in urban and suburban areas as well.
More information can be found: https://www.commerce.wa.gov/building-infrastructure/washington-state-drive-in-wifi-hotspots-location-finder/
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data collected from a five-wave panel survey of adult Louisiana residents as part of the project "RAPID: Pandemic Anxiety, Recovery, and Inequality: Evaluating Institutions and Policy in a Coronavirus Hotspot" (NSF Award #2031591)
Facebook
TwitterContains the following information:COVID cases, case prevalence over different time spans, current COVID hotspots, and number of tests for the ABQ metro area at zip code level. Social vulnerability factors for the ABQ metro area at zip code level. COVID deaths at the small area level. The location of testing sites (updated regularly as new sites and information are found)The spread of COVID, testing, deaths, and PPE supply information by nursing homes (updated regularly)The locations of summer meal sites. This dashboard runs in this app: https://nmcdc.maps.arcgis.com/apps/MapSeries/index.html?appid=1ff0aa71c0ae427cbb5753d08ae19eabThis dashboard runs the following maps:Social Vulnerability Index, Albuquerque Metro Area, Census Tracts & Zip Codes, 2018 - https://nmcdc.maps.arcgis.com/home/item.html?id=850e8f2e7c394fb99041b94f813cb5faCOVID-19 Testing Locations - New Mexico - https://nmcdc.maps.arcgis.com/home/item.html?id=aace827af8fa4d2d9037ce5c7fb0e880COVID Deaths, NM Small Areas - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=a56dab27204b4573a7f8d1663bc95844COVID-19 TESTING & CASES by TIME PERIODS, ZIP CODES - v1 - https://nmcdc.maps.arcgis.com/home/item.html?id=14e05ddda38d40cb9746750072d00c80Summer Meal Sites - CABQ - https://nmcdc.maps.arcgis.com/home/item.html?id=5fb8f3e689df4f03ab8be107d04fcd30Nursing Homes, COVID-19 Cases and Deaths, New Mexico and USA - https://nmcdc.maps.arcgis.com/home/item.html?id=8e74a05a32324aa3bcc07e2b1545d446
Facebook
TwitterAs of May 2, 2023, Brazil was the country with the highest number of confirmed cases of COVID-19 in Latin America and the fifth highest in the world, reaching over 37 million patients. By state, São Paulo ranked first, with more than 6.6 million confirmed cases of the disease as of September 21, 2023. Minas Gerais followed, with over 4.2 million confirmed cases of coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAs of April 2020, ** percent of UK citizens surveyed believed social distancing measures were necessary during the coronavirus (COVID-19) pandemic, while ** percent of respondents thought that it was necessary to prevent flights coming into the UK from virus hotspots. Although less than ********** of respondents thought that closing schools was important in response to the coronavirus outbreak.
The latest number of cases in the UK can be found here. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
Facebook
Twitterhttps://www.dataflix.com/data360/license/https://www.dataflix.com/data360/license/
The Dataflix COVID dataset is a centralized repository of up-to-date and curated data focused on key tracking metics and U.S. census data. The dataset is publicly-readable & accessible on Google BigQuery – ready for analysis, analytics and machine learning initiatives. The dataset is built on data sourced from trusted sources like CSSE at Johns Hopkins University and government agencies, covering a wide range of metrics including confirmed cases, new cases, % population, mortality rate and deaths, aggregated at various geographic levels including city, county, state and country. New data is published on daily basis. Our objective is to make structured COVID data available for organizations and individuals to help in the fight against COVID-19. Example, health authorities will be able to build reports & dashboards to efficiently deploy vital resources like hospital beds and ventilators as they track the spread of the disease. Or epidemiologists can use the dataset to complement their existing models & datasets, and generate better forecasts of hotspots and trends. Learn more
Facebook
Twitterhttps://www.dataflix.com/data360/license/https://www.dataflix.com/data360/license/
The Dataflix COVID dataset is a centralized repository of up-to-date and curated data focused on key tracking metics and U.S. census data. The dataset is publicly-readable & accessible on Google BigQuery – ready for analysis, analytics and machine learning initiatives. The dataset is built on data sourced from trusted sources like CSSE at Johns Hopkins University and government agencies, covering a wide range of metrics including confirmed cases, new cases, % population, mortality rate and deaths, aggregated at various geographic levels including city, county, state and country. New data is published on daily basis. Our objective is to make structured COVID data available for organizations and individuals to help in the fight against COVID-19. Example, health authorities will be able to build reports & dashboards to efficiently deploy vital resources like hospital beds and ventilators as they track the spread of the disease. Or epidemiologists can use the dataset to complement their existing models & datasets, and generate better forecasts of hotspots and trends. Más información
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.