Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
[ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.
Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths
2020-01-21,Snohomish,Washington,53061,1,0
...
In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their...
Facebook
TwitterThe COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Facebook
TwitterNEW: We are publishing the data behind our excess deaths tracker in order to provide researchers and the public with a better record of the true toll of the pandemic. This data is compiled from official national and municipal data for 24 countries. See the data and documentation in the excess-deaths/ directory.
[ U.S. Data (Raw CSV) | U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
We are providing two sets of data with cumulative counts of coronavirus cases and deaths: one with our most current numbers for each geography and another with historical data showing the tally for each day for each geography.
The historical data files are at the top level of the directory and contain data up to, but not including the current day. The live data files are in the live/ directory.
A key difference between the historical and live files is that the numbers in the historical files are the final counts at the end of each day, while the live files have figures that may be a partial count released during the day but cannot necessarily be considered the final, end-of-day tally..
The historical and live data are released in three files, one for each of these geographic levels: U.S., states and counties.
Each row of data reports the cumulative number of coronavirus cases and deaths based on our best reporting up to the moment we publish an update. Our counts include both laboratory confirmed and probable cases using criteria that were developed by states and the federal government. Not all geographies are reporting probable cases and yet others are providing confirmed and probable as a single total. Please read here for a full discussion of this issue.
We do our best to revise earlier entries in the data when we receive new information. If a county is not listed for a date, then there were zero reported confirmed cases and deaths.
State and county files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
The daily number of cases and deaths nationwide, including states, U.S. territories and the District of Columbia, can be found in the us.csv file. (Raw CSV file here.)
date,cases,deaths
2020-01-21,1,0
...
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,c...
Facebook
TwitterThere is a need for development of an analytical method for rapid detection of SARS-CoV-2 virus which is causing the COVID-19 pandemic. Currently available traditional tissue/cell culture-based analytical method is too laborious and takes several days to get the results on the presence/absence of viable/infectious virus in a sample. Such a delay in getting the sample analysis results can be a serious obstacle in rapidly determining the presence of infectious virus in environment which, in turn, can impact environmental epidemiological investigations and studies on surface transmission of this virus. In this manuscript, development of a Rapid Viability Reverse Transcriptase Polymerase Chain Reaction (RV-RT-PCR) method that can significantly reduce the time-to-results for sample analysis from several days to less than a day is described. The RV-RT-PCR method integrates cell-culture based enrichment of the virus with virus-specific RT-PCR analysis. The RTPCR analysis is conducted before and after the cell-culture-virus (sample) incubation. An optimum algorithm is established such that the resultant RT-PCR cycle threshold (CT) value difference between before and after cell-culture-virus incubation RT-PCR analyses determines the presence of viable/infectious virus in the sample. The data set included here is from this research work. A manuscript has also been included here along with the Supplemental Tables for additional data. The Data-Metadata file includes all the data and a glossary to explain the scientific terms used. This dataset is associated with the following publication: Shah, S., S. Kane, M. Elsheikh, and T. Alfaro. Development of a Rapid Viability RT-PCR (RV-RT-PCR) Method to Detect Infectious SARS-CoV-2 from Swabs. JOURNAL OF VIROLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 297: 114251, (2021).
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This Data is related to the World Fight against the Infectious Disease COVID-19 (CoronaVirus).
This DataSet contains the World Data of Total Cases, Total Death, Total Tests and more by each Country and Continents.
This data is collected by Web Scraping. In this, I Scrap the data from the website Worldometers by writing the code in Python. For more, please Check the Code. Special Thanks to the Website Worldometers for providing such data. https://www.kaggle.com/samrat77/coronavirus-data-web-scraping
Inspired by all the others kagglers who are posting datasets and kernels on a daily bases.
Facebook
TwitterThis layer has been DEPRECATED (last updated 12/1/2021). This was formerly a weekly update. Summary The Outbreak-Associated Cases in Congregate Living data dashboard on coronavirus.maryland.gov was redesigned on 11/17/21 to align with other outbreak reporting. Visit https://opendata.maryland.gov/dataset/MD-COVID-19-Congregate-Outbreak/ey5n-qn5s to view Outbreak-Associated Cases in Congregate Living data as reported after 11/17/21. Confirmed COVID-19 cases among Maryland residents within a single Maryland jurisdiction who live and work in congregate living facilities for the reporting period. Description The MD COVID-19 - Total Cases in Congregate Facility Settings data layer is a total of positive COVID-19 test results have been reported to MDH in nursing homes, assisted living facilities, group homes of 10 or more and state and local facilities in each Maryland jurisdiction for the reporting period. Data are reported to MDH by local health departments, the Department of Public Safety and Correctional Services and the Department of Juvenile Services. To appear on the list, facilities report at least one confirmed case of COVID-19 over the prior 14 days. Facilities are removed from the list when health officials determine 14 days have passed with no new cases and no tests pending.The list provides a point-in-time picture of COVID-19 case activity among these facilities. Numbers reported for each facility listed reflect totals ever reported for cases. Data are updated once weekly. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterNote: This dataset is no longer being maintained and will not be updated going forward. The weekly and cumulative number of residents with confirmed COVID-19 and with COVID-19 associated deaths is obtained from data self-reported by individual assisted living facilities to the Long Term Care Mutual Aid Plan web-based reporting system (www.mutualaidplan.org/ct). Both confirmed and suspect deaths are included. Confirmed deaths include those among persons who tested positive for COVID-19. Suspected deaths include those among persons with signs and symptoms suggestive of COVID-19 but who did not have a laboratory positive COVID-19 test. Due to differing data collection and processing methods between LTC-MAP and the death data sources used previously, cumulative death data for residents was re-baselined on July 14, 2020. The resident death data before and after July 14, 2020 should not be added due to the differing definitions of COVID-19 associated deaths used and the possibility of duplication of deaths among prior and current data. The cumulative number of deaths among assisted living residents is based upon data reported by the Office of the Chief Medical Examiner. For public health surveillance, COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death (laboratory-confirmed) and persons whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death (probable). As of 7/15/20 deaths reported by the Office of the Chief Medical Examiner are no longer being updated on a weekly basis.
Facebook
Twitter2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and the latest trend plot. It covers the US (county or state level), China, Canada, Australia (province/state level), and the rest of the world (country/region level, represented by either the country centroids or their capitals). Data sources are WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, the COVID Tracking Project (testing and hospitalizations), state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team, JHU APL and JHU Data Services. This layer is opened to the public and free to share. Contact us.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In order to prepare ourselves for the coming virus, the absolute necessity will be the availability of data in providing insights to solve this serious issue at hand
The content of this data is daily toll of the basic statistics starting from 19-03-20.
thanks to www.worldometers.info
There is immense amount of insights that can be inferred from this data which could help everyone. It can be used to model the spread of the novel coronavirus and that is my main motivation here.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Release model requires permission from Fiona Stevenson for data protection purposes. For access to this dataset please contact f.stevenson@ucl.ac.uk
Please find further information regarding this dataset in the attached file. Design Cross-sectional single-arm service evaluation of real-time user data. Setting 31 Post-COVID clinics in the UK. Participants 3,754 adults diagnosed with PCS in primary or secondary care, deemed suitable for rehabilitation. Intervention Patients using the Living With Covid Recovery (LWCR) Digital Health Intervention (DHI) registered between 30/11/20 and 23/03/22. Primary and secondary outcome measures The primary outcome was the baseline Work and Social Adjustment Scale (WSAS). WSAS measures the functional limitations of the patient; scores ≥20 indicate moderately severe limitations. Other symptom data collected included fatigue (FACIT-F), depression (PHQ-8), anxiety (GAD-7), breathlessness (MRC Dyspnoea Scale and Dyspnoea-12), cognitive impairment (PDQ-5) and health-related quality of life (EQ-5D).
Data collection period 30/11/20 to 17/7/22 (inclusive)
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Visual Dashboard (mobile): http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61
Lancet Article: An interactive web-based dashboard to track COVID-19 in real time
Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/
Data Sources:
World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
Additional Information about the Visual Dashboard: https://systems.jhu.edu/research/public-health/ncov/
Contact:
Email: jhusystems@gmail.com
Terms of Use:
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic.
The symptoms of COVID‑19 are variable but often include fever, cough, headache, fatigue, breathing difficulties, loss of smell, and loss of taste. Symptoms may begin one to fourteen days after exposure to the virus. At least a third of people who are infected do not develop noticeable symptoms. Of those who develop symptoms noticeable enough to be classified as patients, most (81%) develop mild to moderate symptoms (up to mild pneumonia), while 14% develop severe symptoms (dyspnea, hypoxia, or more than 50% lung involvement on imaging), and 5% develop critical symptoms (respiratory failure, shock, or multiorgan dysfunction). Older people are at a higher risk of developing severe symptoms. Some people continue to experience a range of effects (long COVID) for months after recovery, and damage to organs has been observed. Multi-year studies are underway to further investigate the long-term effects of the disease.
This dataset consists of covid-19 information for every country. It has 218 rows and 25 columns.
This dataset was generated from VACCOVID.LIVE, a thorough and current website that tracks vaccines, COVID-19, and treatments. To educate people about the current novel coronavirus (COVID-19) pandemic, this website has been launched. You may discover the most recent and pertinent information regarding covid-19 in VACCOVID.
For more information: https://vaccovid.live/
Performing Exploratory Data Analysis (EDA) on this data and creating important Visualizations, Dashboard, etc.
Facebook
TwitterThe COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Facebook
TwitterThe COVID Information Commons (CIC) is an open website portal and community to facilitate knowledge-sharing and collaboration across various COVID research efforts, funded by the NSF Convergence Accelerator and the  NSF Technology, Innovation and Partnerships Directorate. The CIC serves as an open resource for researchers, students, and decision-makers from academia, government, not-for-profits and industry to identify collaboration opportunities, to leverage each other's research findings, and to accelerate the most promising research to mitigate the broad societal impacts of the COVID-19 pandemic. The CIC was developed as a collaborative proposal led by the Northeast Big Data Innovation Hub, hosted by Columbia University, in collaboration with the Midwest Big Data Innovation Hub, South Big Data Innovation Hub, and West Big Data Innovation Hub. It was funded by the NSF Convergence Accelerator (NSF #2028999) in May 2020 and launched in July 2020. The initial focus of the CIC website ..., The NSF and NIH funded COVID related awards corpus in the CIC was collected primarily from NSF and NIH via APIs. Further information has been collected directly from researchers, who filled out an online form to enhance the descriptions. The dataset has been cleaned and enhanced by automated processing, using custom scripts to remove invalid characters, and standardize names of funding agency divisions., , # COVID Information Commons Archive
This archive is a snapshot of the COVID Information Commons (CIC). The CIC is a live database that records information about COVID-19 researchers and their projects.
The snapshot of the CIC contains the following files, each listed with a description of the fields it contains:
cic_people_export.json -- Researchers who have studied aspects of COVID-19. All information known about the researchers in CIC, except email addresses, which have been filtered out for privacy purposes. Some researchers have minimal information, as CIC may only know their name via a reference in a grant description. Other people have more complete records, if they have provided additional information to the CIC.
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Our free COVID-19 Stats and New API lets you send a web-based query to Smartable AI and get back details about global and regional coronavirus data, including latest numbers, historic values, and geo-breakdowns. It is the same API that powers our popular COVID-19 stats pages. Developers can take the returned information and display it in their own tools, apps and visualizations. Different from other coronavirus data sources that produce breaking changes from time to time, the data from our API are more stable, **detailed **and close to real-time, as we leverage AI to gather information from many credible sources. With a few clicks in our API try-it experience, developers can get it running quickly and unleash their creativity.
“We’re not just fighting an epidemic; we’re fighting an infodemic” – WHO Director-General Tedros Adhanom Ghebreyesus
In Smartable AI, our mission is to use AI to help you be smart in this infodemic world. Information is exploded, and mis-information has impacted the decisions of governments, businesses, and citizens around the world, as well as individuals’ lives. In 2018, The World Economic Forum identified it as one of the top 10 global risks. In a recent study, the economic impact has been estimated to be upwards of 80-100 Billion Dollars. Everything we do is focused on fighting misinformation, curating quality content, putting information in order and leveraging technology to bring clean, organized information through our APIs. Everyone wins when they can make sense of the world around them.
The coronavirus stats and news API offers the latest and historic COVID-19 stats and news information per country or state. The stats are refreshed every hour using credible data sources, including the country/state’s official government websites, data available on wikipedia pages, latest news reports, Johns Hopkins University CSSE 2019-nCoV Dashboard, WHO Situation Reports, CDC Situation Updates, and DXY.cn.
The API takes the location ISO code as input (e.g. US, US-MA), and returns the latest numbers (confirmed, deaths, recovered), the delta from yesterday, the full history in that location, and geo-breakdown when applicable. We offer detailed API documentation, a try-it experience, and code examples in many different programming languages.
https://smartable.azureedge.net/media/2020/03/coronavirus-api-documentation.webp" alt="API Documentation">
We upload a daily dump of the data in the csv format here.
We want it to be a collaborative effort. If you have any additional requirements for the API or observe anything wrong with the data, we welcome you to report issues in our GitHub account. The team will jump in right away. All our team members are ex-Microsoft employees, so you can trust the quality of support, I guess 🙂
We have developed two example apps by using the API.
Facebook
TwitterCoronavirus resources: US state and local health deparments (Live Science web page)._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.