https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Beginning March 1, 2022, the "COVID-19 Case Surveillance Public Use Data" will be updated on a monthly basis. This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data. CDC has three COVID-19 case surveillance datasets: COVID-19 Case Surveillance Public Use Data with Geography: Public use, patient-level dataset with clinical data (including symptoms), demographics, and county and state of residence. (19 data elements) COVID-19 Case Surveillance Public Use Data: Public use, patient-level dataset with clinical and symptom data and demographics, with no geographic data. (12 data elements) COVID-19 Case Surveillance Restricted Access Detailed Data: Restricted access, patient-level dataset with clinical and symptom data, demographics, and state and county of residence. Access requires a registration process and a data use agreement. (32 data elements) The following apply to all three datasets: Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. Some data cells are suppressed to protect individual privacy. The datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensures that time-dependent outcome data are accurately captured. Datasets are updated monthly. Datasets are created using CDC’s operational Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. For more information about data collection and reporting, please see https://wwwn.cdc.gov/nndss/data-collection.html For more information about the COVID-19 case surveillance data, please see https://www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html Overview The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification. The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported volun
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (to
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance publicly available dataset has 33 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. This dataset requires a registration process and a data use agreement.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
COVID-19 case surveillance data are collected by jurisdictions and are shared voluntarily with CDC. For more information, visit: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/about-us-cases-deaths.html.
The deidentified data in the restricted access dataset include demographic characteristics, state and county of residence, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and comorbidities.
All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using standardized case reporting forms.
On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases.
On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations:
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Covid-19 Daily metrics at the county level As of 6/1/2023, this data set is no longer being updated. The COVID-19 Data Report is posted on the Open Data Portal every day at 3pm. The report uses data from multiple sources, including external partners; if data from external partners are not received by 3pm, they are not available for inclusion in the report and will not be displayed. Data that are received after 3pm will still be incorporated and published in the next report update. The cumulative number of COVID-19 cases (cumulative_cases) includes all cases of COVID-19 that have ever been reported to DPH. The cumulative number of COVID_19 cases in the last 7 days (cases_7days) only includes cases where the specimen collection date is within the past 7 days. While most cases are reported to DPH within 48 hours of specimen collection, there are a small number of cases that routinely are delayed, and will have specimen collection dates that fall outside of the rolling 7 day reporting window. Additionally, reporting entities may submit correction files to contribute historic data during initial onboarding or to address data quality issues; while this is rare, these correction files may cause a large amount of data from outside of the current reporting window to be uploaded in a single day; this would result in the change in cumulative_cases being much larger than the value of cases_7days. On June 4, 2020, the US Department of Health and Human Services issued guidance requiring the reporting of positive and negative test results for SARS-CoV-2; this guidance expired with the end of the federal PHE on 5/11/2023, and negative SARS-CoV-2 results were removed from the List of Reportable Laboratory Findings. DPH will no longer be reporting metrics that were dependent on the collection of negative test results, specifically total tests performed or percent positivity. Positive antigen and PCR/NAAT results will continue to be reportable.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
[ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.
Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths
2020-01-21,Snohomish,Washington,53061,1,0
...
In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.
Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.
For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.
In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.
Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.
Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.
Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.
All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.
Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.
Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.
All cases and deaths for Chicago are reported as part of Cook County.
In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.
If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”
If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.
If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.
See our LICENSE for the full terms of use for this data.
This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.
If you have questions about the data or licensing conditions, please contact us at:
covid-data@nytimes.com
Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.
Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.
There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States
[ U.S. State-Level Data ([Raw
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.
If you reuse or enrich this dataset, please share it with us.
DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 test results by date of specimen collection, including total, positive, negative, and indeterminate for molecular and antigen tests. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests. Test results may be reported several days after the result. Data are incomplete for the most recent days. Data from previous dates are routinely updated. Records with a null date field summarize tests reported that were missing the date of collection. Starting in July 2020, this dataset will be updated every weekday.
The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://res1datad-o-tctd-o-tgov.vcapture.xyz/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://res1datad-o-tctd-o-tgov.vcapture.xyz/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://res1datad-o-tctd-o-tgov.vcapture.xyz/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://res1datad-o-tctd-o-tgov.vcapture.xyz/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes CSV files that contain IDs and sentiment scores of the tweets related to the COVID-19 pandemic. The tweets have been collected by an on-going project deployed at https://live.rlamsal.com.np. The model monitors the real-time Twitter feed for coronavirus-related tweets using 90+ different keywords and hashtags that are commonly used while referencing the pandemic. This dataset has been wholly re-designed on March 20, 2020, to comply with the content redistribution policy set by Twitter. Below is the quick overview of this dataset.— Number of tweets : 468,019,953 tweets— Coverage : Global— Language : English (EN)— Geo-tagged tweets : Coronavirus (COVID-19) Geo-tagged Tweets Dataset— Keywords and hashtags (last updated on August 11, 2020) : "corona", "#corona", "coronavirus", "#coronavirus", "covid", "#covid", "covid19", "#covid19", "covid-19", "#covid-19", "sarscov2", "#sarscov2", "sars cov2", "sars cov 2", "covid_19", "#covid_19", "#ncov", "ncov", "#ncov2019", "ncov2019", "2019-ncov", "#2019-ncov", "pandemic", "#pandemic" "#2019ncov", "2019ncov", "quarantine", "#quarantine", "flatten the curve", "flattening the curve", "#flatteningthecurve", "#flattenthecurve", "hand sanitizer", "#handsanitizer", "#lockdown", "lockdown", "social distancing", "#socialdistancing", "work from home", "#workfromhome", "working from home", "#workingfromhome", "ppe", "n95", "#ppe", "#n95", "#covidiots", "covidiots", "herd immunity", "#herdimmunity", "pneumonia", "#pneumonia", "chinese virus", "#chinesevirus", "wuhan virus", "#wuhanvirus", "kung flu", "#kungflu", "wearamask", "#wearamask", "wear a mask", "vaccine", "vaccines", "#vaccine", "#vaccines", "corona vaccine", "corona vaccines", "#coronavaccine", "#coronavaccines", "face shield", "#faceshield", "face shields", "#faceshields", "health worker", "#health worker", "health workers", "#healthworkers", "#stayhomestaysafe", "#coronaupdate", "#frontlineheroes", "#coronawarriors", "#homeschool", "#homeschooling", "#hometasking", "#masks4all", "#wfh", "wash ur hands", "wash your hands", "#washurhands", "#washyourhands", "#stayathome", "#stayhome", "#selfisolating", "self isolating", "bars closed", "restaurants closed"— Dataset updates : Everyday— Usage policy : As per Twitter's Developer PolicyDataset Files (the local time mentioned below is GMT+5:45)corona_tweets_01.csv + corona_tweets_02.csv + corona_tweets_03.csv: 2,475,980 tweets (March 20, 2020 01:37 AM - March 21, 2020 09:25 AM)corona_tweets_04.csv: 1,233,340 tweets (March 21, 2020 09:27 AM - March 22, 2020 07:46 AM)corona_tweets_05.csv: 1,782,157 tweets (March 22, 2020 07:50 AM - March 23, 2020 09:08 AM)corona_tweets_06.csv: 1,771,295 tweets (March 23, 2020 09:11 AM - March 24, 2020 11:35 AM)corona_tweets_07.csv: 1,479,651 tweets (March 24, 2020 11:42 AM - March 25, 2020 11:43 AM)corona_tweets_08.csv: 1,272,592 tweets (March 25, 2020 11:47 AM - March 26, 2020 12:46 PM)corona_tweets_09.csv: 1,091,429 tweets (March 26, 2020 12:51 PM - March 27, 2020 11:53 AM)corona_tweets_10.csv: 1,172,013 tweets (March 27, 2020 11:56 AM - March 28, 2020 01:59 PM)corona_tweets_11.csv: 1,141,210 tweets (March 28, 2020 02:03 PM - March 29, 2020 04:01 PM)> March 29, 2020 04:02 PM - March 30, 2020 02:00 PM -- Some technical fault has occurred. Preventive measures have been taken. Tweets for this session won't be available.corona_tweets_12.csv: 793,417 tweets (March 30, 2020 02:01 PM - March 31, 2020 10:16 AM)corona_tweets_13.csv: 1,029,294 tweets (March 31, 2020 10:20 AM - April 01, 2020 10:59 AM)corona_tweets_14.csv: 920,076 tweets (April 01, 2020 11:02 AM - April 02, 2020 12:19 PM)corona_tweets_15.csv: 826,271 tweets (April 02, 2020 12:21 PM - April 03, 2020 02:38 PM)corona_tweets_16.csv: 612,512 tweets (April 03, 2020 02:40 PM - April 04, 2020 11:54 AM)corona_tweets_17.csv: 685,560 tweets (April 04, 2020 11:56 AM - April 05, 2020 12:54 PM)corona_tweets_18.csv: 717,301 tweets (April 05, 2020 12:56 PM - April 06, 2020 10:57 AM)corona_tweets_19.csv: 722,921 tweets (April 06, 2020 10:58 AM - April 07, 2020 12:28 PM)corona_tweets_20.csv: 554,012 tweets (April 07, 2020 12:29 PM - April 08, 2020 12:34 PM)corona_tweets_21.csv: 589,679 tweets (April 08, 2020 12:37 PM - April 09, 2020 12:18 PM)corona_tweets_22.csv: 517,718 tweets (April 09, 2020 12:20 PM - April 10, 2020 09:20 AM)corona_tweets_23.csv: 601,199 tweets (April 10, 2020 09:22 AM - April 11, 2020 10:22 AM)corona_tweets_24.csv: 497,655 tweets (April 11, 2020 10:24 AM - April 12, 2020 10:53 AM)corona_tweets_25.csv: 477,182 tweets (April 12, 2020 10:57 AM - April 13, 2020 11:43 AM)corona_tweets_26.csv: 288,277 tweets (April 13, 2020 11:46 AM - April 14, 2020 12:49 AM)corona_tweets_27.csv: 515,739 tweets (April 14, 2020 11:09 AM - April 15, 2020 12:38 PM)corona_tweets_28.csv: 427,088 tweets (April 15, 2020 12:40 PM - April 16, 2020 10:03 AM)corona_tweets_29.csv: 433,368 tweets (April 16, 2020 10:04 AM - April 17, 2020 10:38 AM)corona_tweets_30.csv: 392,847 tweets (April 17, 2020 10:40 AM - April 18, 2020 10:17 AM)> With the addition of some more coronavirus specific keywords, the number of tweets captured day has increased significantly, therefore, the CSV files hereafter will be zipped. Lets save some bandwidth.corona_tweets_31.csv: 2,671,818 tweets (April 18, 2020 10:19 AM - April 19, 2020 09:34 AM)corona_tweets_32.csv: 2,393,006 tweets (April 19, 2020 09:43 AM - April 20, 2020 10:45 AM)corona_tweets_33.csv: 2,227,579 tweets (April 20, 2020 10:56 AM - April 21, 2020 10:47 AM)corona_tweets_34.csv: 2,211,689 tweets (April 21, 2020 10:54 AM - April 22, 2020 10:33 AM)corona_tweets_35.csv: 2,265,189 tweets (April 22, 2020 10:45 AM - April 23, 2020 10:49 AM)corona_tweets_36.csv: 2,201,138 tweets (April 23, 2020 11:08 AM - April 24, 2020 10:39 AM)corona_tweets_37.csv: 2,338,713 tweets (April 24, 2020 10:51 AM - April 25, 2020 11:50 AM)corona_tweets_38.csv: 1,981,835 tweets (April 25, 2020 12:20 PM - April 26, 2020 09:13 AM)corona_tweets_39.csv: 2,348,827 tweets (April 26, 2020 09:16 AM - April 27, 2020 10:21 AM)corona_tweets_40.csv: 2,212,216 tweets (April 27, 2020 10:33 AM - April 28, 2020 10:09 AM)corona_tweets_41.csv: 2,118,853 tweets (April 28, 2020 10:20 AM - April 29, 2020 08:48 AM)corona_tweets_42.csv: 2,390,703 tweets (April 29, 2020 09:09 AM - April 30, 2020 10:33 AM)corona_tweets_43.csv: 2,184,439 tweets (April 30, 2020 10:53 AM - May 01, 2020 10:18 AM)corona_tweets_44.csv: 2,223,013 tweets (May 01, 2020 10:23 AM - May 02, 2020 09:54 AM)corona_tweets_45.csv: 2,216,553 tweets (May 02, 2020 10:18 AM - May 03, 2020 09:57 AM)corona_tweets_46.csv: 2,266,373 tweets (May 03, 2020 10:09 AM - May 04, 2020 10:17 AM)corona_tweets_47.csv: 2,227,489 tweets (May 04, 2020 10:32 AM - May 05, 2020 10:17 AM)corona_tweets_48.csv: 2,218,774 tweets (May 05, 2020 10:38 AM - May 06, 2020 10:26 AM)corona_tweets_49.csv: 2,164,251 tweets (May 06, 2020 10:35 AM - May 07, 2020 09:33 AM)corona_tweets_50.csv: 2,203,686 tweets (May 07, 2020 09:55 AM - May 08, 2020 09:35 AM)corona_tweets_51.csv: 2,250,019 tweets (May 08, 2020 09:39 AM - May 09, 2020 09:49 AM)corona_tweets_52.csv: 2,273,705 tweets (May 09, 2020 09:55 AM - May 10, 2020 10:11 AM)corona_tweets_53.csv: 2,208,264 tweets (May 10, 2020 10:23 AM - May 11, 2020 09:57 AM)corona_tweets_54.csv: 2,216,845 tweets (May 11, 2020 10:08 AM - May 12, 2020 09:52 AM)corona_tweets_55.csv: 2,264,472 tweets (May 12, 2020 09:59 AM - May 13, 2020 10:14 AM)corona_tweets_56.csv: 2,339,709 tweets (May 13, 2020 10:24 AM - May 14, 2020 11:21 AM)corona_tweets_57.csv: 2,096,878 tweets (May 14, 2020 11:38 AM - May 15, 2020 09:58 AM)corona_tweets_58.csv: 2,214,205 tweets (May 15, 2020 10:13 AM - May 16, 2020 09:43 AM)> The server and the databases have been optimized; therefore, there is a significant rise in the number of tweets captured per day.corona_tweets_59.csv: 3,389,090 tweets (May 16, 2020 09:58 AM - May 17, 2020 10:34 AM)corona_tweets_60.csv: 3,530,933 tweets (May 17, 2020 10:36 AM - May 18, 2020 10:07 AM)corona_tweets_61.csv: 3,899,631 tweets (May 18, 2020 10:08 AM - May 19, 2020 10:07 AM)corona_tweets_62.csv: 3,767,009 tweets (May 19, 2020 10:08 AM - May 20, 2020 10:06 AM)corona_tweets_63.csv: 3,790,455 tweets (May 20, 2020 10:06 AM - May 21, 2020 10:15 AM)corona_tweets_64.csv: 3,582,020 tweets (May 21, 2020 10:16 AM - May 22, 2020 10:13 AM)corona_tweets_65.csv: 3,461,470 tweets (May 22, 2020 10:14 AM - May 23, 2020 10:08 AM)corona_tweets_66.csv: 3,477,564 tweets (May 23, 2020 10:08 AM - May 24, 2020 10:02 AM)corona_tweets_67.csv: 3,656,446 tweets (May 24, 2020 10:02 AM - May 25, 2020 10:10 AM)corona_tweets_68.csv: 3,474,952 tweets (May 25, 2020 10:11 AM - May 26, 2020 10:22 AM)corona_tweets_69.csv: 3,422,960 tweets (May 26, 2020 10:22 AM - May 27, 2020 10:16 AM)corona_tweets_70.csv: 3,480,999 tweets (May 27, 2020 10:17 AM - May 28, 2020 10:35 AM)corona_tweets_71.csv: 3,446,008 tweets (May 28, 2020 10:36 AM - May 29, 2020 10:07 AM)corona_tweets_72.csv: 3,492,841 tweets (May 29, 2020 10:07 AM - May 30, 2020 10:14 AM)corona_tweets_73.csv: 3,098,817 tweets (May 30, 2020 10:15 AM - May 31, 2020 10:13 AM)corona_tweets_74.csv: 3,234,848 tweets (May 31, 2020 10:13 AM - June 01, 2020 10:14 AM)corona_tweets_75.csv: 3,206,132 tweets (June 01, 2020 10:15 AM - June 02, 2020 10:07 AM)corona_tweets_76.csv: 3,206,417 tweets (June 02, 2020 10:08 AM - June 03, 2020 10:26 AM)corona_tweets_77.csv: 3,256,225 tweets (June 03, 2020 10:27 AM - June 04, 2020 10:23 AM)corona_tweets_78.csv: 2,205,123 tweets (June 04, 2020 10:26 AM - June 05, 2020 10:03 AM) (tweet IDs were extracted from the backup server for this session)corona_tweets_79.csv: 3,381,184 tweets (June 05, 2020 10:11 AM - June 06, 2020 10:16 AM)corona_tweets_80.csv: 3,194,500 tweets (June 06, 2020 10:17 AM - June 07, 2020 10:24 AM)corona_tweets_81.csv: 2,768,780 tweets (June 07, 2020 10:25 AM - June 08, 2020 10:13 AM)corona_tweets_82.csv: 3,032,227 tweets (June 08, 2020 10:13 AM - June 09, 2020 10:12
Collection of scholarly articles about COVID-19 and coronavirus family of viruses for use by global research community. Dataset is updated on weekly basis.
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived historical community transmission and related data elements by county. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly historical community transmission data by county can also be found here: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this historical dataset with the daily county-level transmission data from January 22, 2020, and a dataset with the daily values as originally posted on the COVID Data Tracker. Similar to this dataset, the original dataset with daily data as posted is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing community transmission data by county as originally posted is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties and jurisdictions. It contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset was updated to include the most recent days’ data and incorporate any historical changes made by jurisdictions. This dataset includes data since January 22, 2020. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substa
The first two cases of the new coronavirus (COVID-19) in Italy were recorded between the end of January and the beginning of February 2020. Since then, the number of cases in Italy increased steadily, reaching over 26.9 million as of January 8, 2025. The region mostly hit by the virus in the country was Lombardy, counting almost 4.4 million cases. On January 11, 2022, 220,532 new cases were registered, which represented the biggest daily increase in cases in Italy since the start of the pandemic. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
This data set is no longer being updated and is historical, last update 10/10/2022. Provides the percentage of COVID-19 cases by ethnicity for the last 8 weeks in Jefferson County, KY.Fieldname Description ethnicity description of ethnicity population_percent proportion of population in identified by ethnicity to total population by_ethinicity Number of confirmed cases identified by ethnicity total_confirmed number of all confirmed cases to date ethinicity_percent Proportion of confirmed cases identified by ethnicity to total number of confirmed cases to date by_ ethinicity_deceased Number of deceased cased identified by ethnicity total_deceased number of all deceased cases to date deceased_percent Proportion of deceased cases identified by ethnicity to total number of deceased cases to date REPORT_BEGIN_DATE The date calculated as 8 weeks before the report end date. The beginning date of the date range of data aggregated. REPORT_END_DATE The end date of the reporting period. Loaded Date the data was loaded into the system Note: This data is preliminary, routinely updated, and is subject to changeFor questions about this data please contact Angela Graham (Angela.Graham@louisvilleky.gov) or YuTing Chen (YuTing.Chen@louisvilleky.gov) or call (502) 574-8279.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.