Facebook
TwitterThe Mayor’s Office utilizes the most recent data to inform decisions about COVID-19 response and policies. The Los Angeles COVID-19 Neighborhood Map visualizes the cases and deaths across 139 neighborhoods in the city. It includes the same data used by the office to spot changes in infection trends in the city, and identify areas where testing resources should be deployed.Data Source:Data are provided on a weekly basis by the LA County Department of Public Health and prepared by the LA Mayor's Office Innovation Team. The data included in this map are on a one-week lag. That means the data shown here are reporting statistics gathered from one week ago. This map will be updated weekly on Mondays. Click on the maps to zoom in, get more details, and see the legends.
Facebook
TwitterCOVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
COVID-19 data for LA County neighborhoods and communities. Updated daily.
Source: LA County Public Health (http://dashboard.publichealth.lacounty.gov/covid19_surveillance_dashboard/). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
Facebook
TwitterThe COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.
The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.
The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.
*Zip Code data has been crosswalked to Census Tract using HUD methodology
Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:
Indicator
ACS Table/Years
Numerator
Denominator
Non-US Citizen
B05001, 2019-2023
b05001_006e
b05001_001e
Below 200% FPL
S1701, 2019-2023
s1701_c01_042e
s1701_c01_001e
Overcrowded Housing Units
B25014, 2019-2023
b25014_006e + b25014_007e + b25014_012e + b25014_013e
b25014_001e
Essential Workers
S2401, 2019-2023
s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e
s2401_c01_001
Seniors 75+ in Poverty
B17020, 2019-2023
b17020_008e + b17020_009e
b17020_008e + b17020_009e + b17020_016e + b17020_017e
Uninsured
S2701, 2019-2023
s2701_c05_001e
NA, rate published in source table
Single-Parent Households
S1101, 2019-2023
s1101_c03_005e + s1101_c04_005e
s1101_c01_001e
Unemployment
S2301, 2019-2023
s2301_c04_001e
NA, rate published in source table
The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:
Indicator
Years
Definition
Denominator
Asthma Hospitalizations
2017-2019
All ICD 10 codes under J45 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Gun Injuries
2017-2019
Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Heart Disease Hospitalizations
2017-2019
ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
Diabetes (Type 2) Hospitalizations
2017-2019
All ICD 10 codes under E11 (under Principal Diagnosis)
American Community Survey, 2015-2019, 5-Year Estimates, Table DP05
For more information about this dataset, please contact egis@isd.lacounty.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dashboard is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for COVID-19 in California. Test positivity for a given week is calculated by dividing the number of positive COVID-19 results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset (https://dof.ca.gov/forecasting/demographics/projections/) provided by the State of California Department of Finance. Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html). Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Facebook
TwitterAs of August 2020, ** percent of households in Los Angeles said they were experiencing serious financial problems due to the COVID-19 outbreak. Of those experiencing new financial burdens, ** percent said they were unable to pay their rent or mortgage.
Facebook
TwitterData is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.
The report is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.
Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.
Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).
CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.
Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Facebook
TwitterTourism spending in Los Angeles in California was predicted to reach 12 billion U.S. dollars in 2020, when taking into account the effects of the coronavirus (COVID-19) pandemic - the figure includes spending on hotels, restaurants, and sight-seeing trips. This was less than half the size of the original 'pre-coronavirus' forecast, which was 25 billion U.S. dollars.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global disruption to human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality will inform public health measures and provide insights to contain or prevent the viral transmission to save lives. Investigation of the transmission history requires efficient sequencing methods and analytic strategy, which can be generally useful in the study of viral outbreaks. Los Angeles (LA) County has sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at UCLA Health System. 86 of these genomes are from samples collected before April 19, 2020. We found that the early outbreak in LA, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a US-specific strain, B.1.43, which has been found predominantly in California and Washington State. While samples from LA County carry the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carry additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but may have been undermined by the many introductions of SARS-CoV-2 into the region. Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the U.S. to have coordinated inter-state responses to the pandemic.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data is for the 2020 COVID-19 Computational Challenge hosted by the City of Los Angeles in partnership with the Global Association for Research Methods and Data Science (RMDS Lab). The data gathered from different sources like NYT open data GitHub repository.
The data collected from: - NYtimes repo on Github. https://github.com/nytimes/covid-19-data) - CHHC open data portal -Asthma by age per county### Predict the risk score for each county in LA, California
The data needs cleaning and processing!
Facebook
TwitterNote: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).
Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.
Data are updated each Friday around 2 pm.
For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.
COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset compiles COVID-19 cases, deaths, hospitalizations, tests and vaccination data for Los Angeles county and city from multiple sources in a frequently updated pdf format. It also contains Monkeypox case and vaccination data since August 2022.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Table S1. Collection dates and quality control for 260 patient samples.
Facebook
TwitterDaily updates on LA County COVID testing.
Source: LA County Department of Health (http://dashboard.publichealth.lacounty.gov/covid19_surveillance_dashboard/). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
Facebook
TwitterCopyright 2020 by The New York Times Company
[ U.S. Data (Raw CSV) | U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
United States Data Data on cumulative coronavirus cases and deaths can be found in three files, one for each of these geographic levels: U.S., states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information. If a county is not listed for a date, then there were zero reported confirmed cases and deaths.
State and county files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
U.S. National-Level Data The daily number of cases and deaths nationwide, including states, U.S. territories and the District of Columbia, can be found in the us.csv file. (Raw CSV file here.)
date,cases,deaths 2020-01-21,1,0 ... State-Level Data State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths 2020-01-21,Washington,53,1,0 ... County-Level Data County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths 2020-01-21,Snohomish,Washington,53061,1,0 ... In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
Methodology and Definitions The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial level have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match with the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their own records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add informati...
Facebook
TwitterDeaths were determined to be COVID-associated if they met the Department of Public Health's surveillance definition at the time of death.The cumulative COVID-19 mortality rate can be used to measure the most severe impacts of COVID-19 in a community. There have been documented inequities in COVID-19 mortality rates by demographic and geographic factors. Black and Brown residents, seniors, and those living in areas with higher rates of poverty have all been disproportionally impacted.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterIn Los Angeles County, methamphetamine accounted for the highest share of overdose deaths among people experiencing homelessness (PEH) in the 12 months before and after the COVID-19 pandemic onset, contributing to approximately three-quarters of all overdose deaths in both years. Fentanyl ranked as the second leading cause of overdose death in both periods, but showed the largest increase in its contribution over the analyzed timeframe. This statistic depicts the percentage of deaths among people experiencing homelessness by overdose pre- and post-COVID-19 pandemic in Los Angeles County, by drug type.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
COVID-19 is on a rise worldwide. It was first identified in the city of Wuhan in China in 2019 and has now spread into a global pandemic. California is currently the fourth largest affected state in USA. The state's confirmed cases have been on a rise since early March 2020 due to more testing capabilities. In this dire time, it is extremely important to understand the factors affecting the spread of the virus in California, identify susceptible population and predict the trajectory of the infected and dead cases on a daily basis.
Update: 4 April 2020, 7:27 PM Pacific Time (PT)
This data contains information about confirmed cases (13927) and fatalities (321) due to COVID-19 in 58 California counties along with instructions provided by health agencies in all counties. A breakdown of confirmed cases in the cities of California is also provided. The information has been sourced from Los Angeles Times.
As mentioned by LA Times, "The tallies here are mostly limited to residents of California, which is the standard method used to count patients by the state’s health authorities. Those totals do not include people from other states who are quarantined here, such as the passengers and crew of the Grand Princess cruise ship that docked in Oakland."
LA Times - https://www.latimes.com/projects/california-coronavirus-cases-tracking-outbreak/
Please consider upvoting if the data is found useful in any way. If there are any improvement suggestions, do let me know.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 4: Table S4. B.1.43 lineages found among the GISAID and UCLA Health SARS-CoV-2 genomes.
Facebook
TwitterThe Mayor’s Office utilizes the most recent data to inform decisions about COVID-19 response and policies. The Los Angeles COVID-19 Neighborhood Map visualizes the cases and deaths across 139 neighborhoods in the city. It includes the same data used by the office to spot changes in infection trends in the city, and identify areas where testing resources should be deployed.Data Source:Data are provided on a weekly basis by the LA County Department of Public Health and prepared by the LA Mayor's Office Innovation Team. The data included in this map are on a one-week lag. That means the data shown here are reporting statistics gathered from one week ago. This map will be updated weekly on Mondays. Click on the maps to zoom in, get more details, and see the legends.