100+ datasets found
  1. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  2. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  3. COVID-19 death rates countries worldwide as of April 26, 2022

    • statista.com
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 death rates countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  4. d

    Replication Data for: Two years of Covid-19 pandemic : A higher prevalence...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Errasfa, Mourad (2023). Replication Data for: Two years of Covid-19 pandemic : A higher prevalence of the disease was associated with higher geographic latitudes, lower temperatures, and unfavorable epidemiologic and demographic conditions. [Dataset]. http://doi.org/10.7910/DVN/JYYZEI
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Errasfa, Mourad
    Description

    ABSTRACT Background : The Covid-19 pandemic associated with the SARS-CoV-2 has caused very high death tolls in many countries, while it has had less prevalence in other countries of Africa and Asia. Climate and geographic conditions, as well as other epidemiologic and demographic conditions, were a matter of debate on whether or not they could have an effect on the prevalence of Covid-19. Objective : In the present work, we sought a possible relevance of the geographic location of a given country on its Covid-19 prevalence. On the other hand, we sought a possible relation between the history of epidemiologic and demographic conditions of the populations and the prevalence of Covid-19 across four continents (America, Europe, Africa, and Asia). We also searched for a possible impact of pre-pandemic alcohol consumption in each country on the two year death tolls across the four continents. Methods : We have sought the death toll caused by Covid-19 in 39 countries and obtained the registered deaths from specialized web pages. For every country in the study, we have analysed the correlation of the Covid-19 death numbers with its geographic latitude, and its associated climate conditions, such as the mean annual temperature, the average annual sunshine hours, and the average annual UV index. We also analyzed the correlation of the Covid-19 death numbers with epidemiologic conditions such as cancer score and Alzheimer score, and with demographic parameters such as birth rate, mortality rate, fertility rate, and the percentage of people aged 65 and above. In regard to consumption habits, we searched for a possible relation between alcohol intake levels per capita and the Covid-19 death numbers in each country. Correlation factors and determination factors, as well as analyses by simple linear regression and polynomial regression, were calculated or obtained by Microsoft Exell software (2016). Results : In the present study, higher numbers of deaths related to Covid-19 pandemic were registered in many countries in Europe and America compared to other countries in Africa and Asia. The analysis by polynomial regression generated an inverted bell-shaped curve and a significant correlation between the Covid-19 death numbers and the geographic latitude of each country in our study. Higher death numbers were registered in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line. In a bell shaped curve, the latitude levels were negatively correlated to the average annual levels (last 10 years) of temperatures, sunshine hours, and UV index of each country, with the highest scores of each climate parameter being registered around the equator line, while lower levels of temperature, sunshine hours, and UV index were registered in higher latitude countries. In addition, the linear regression analysis showed that the Covid-19 death numbers registered in the 39 countries of our study were negatively correlated with the three climate factors of our study, with the temperature as the main negatively correlated factor with Covid-19 deaths. On the other hand, cancer and Alzheimer's disease scores, as well as advanced age and alcohol intake, were positively correlated to Covid-19 deaths, and inverted bell-shaped curves were obtained when expressing the above parameters against a country’s latitude. Instead, the (birth rate/mortality rate) ratio and fertility rate were negatively correlated to Covid-19 deaths, and their values gave bell-shaped curves when expressed against a country’s latitude. Conclusion : The results of the present study prove that the climate parameters and history of epidemiologic and demographic conditions as well as nutrition habits are very correlated with Covid-19 prevalence. The results of the present study prove that low levels of temperature, sunshine hours, and UV index, as well as negative epidemiologic and demographic conditions and high scores of alcohol intake may worsen Covid-19 prevalence in many countries of the northern hemisphere, and this phenomenon could explain their high Covid-19 death tolls. Keywords : Covid-19, Coronavirus, SARS-CoV-2, climate, temperature, sunshine hours, UV index, cancer, Alzheimer disease, alcohol.

  5. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  6. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  7. H

    The geographic latitude-associated anti-COVID capacity index : an...

    • dataverse.harvard.edu
    • dataone.org
    Updated Feb 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mourad Errasfa (2023). The geographic latitude-associated anti-COVID capacity index : an epidemiologic, demographic, and climate-based parameter negatively correlated with the COVID-19 death tolls [Dataset]. http://doi.org/10.7910/DVN/AXNZUA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Mourad Errasfa
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    During the first two year of the Covid-19 pandemic, deaths tolls differed from a country to another. In a previous research work on 39 countries, we have found that some population’s characteristics were either negatively (birth rate/mortality rate, fertility rate) or positively (cancer score, Alzheimer disease score, percent of people above 65 years old, levels of alcohol intake) correlated with Covid-19 mortality. We also found that low levels of climate factors (average annual temperature, average hours of sunshine, average annual level of UV index) were positively correlated with Covid-19 deaths numbers as well. In the present study, we have developped an anti-Covid Capacity index that takes into account all the above mentioned parameters. The polynomial analysis of the anti-Covid Capacity and its corresponding geographic latitude of each country has generated a bell-shaped curve, with a high coefficient of determination (R2= 0.78). Lower anti-Covid capacity values were recorded in countries of low and high latitudes, respectively. Instead, plotting covid-19 deaths numbers against geographic latitude levels has generated an inverted bell-shaped curve, with higher deaths numbers at low and high latitudes, respectively. The analysis by a simple linear regression has shown that Covid-19 deaths numbers were significantly (p= 2,40 x 10-9) and negatively correlated to the anti-Covid Capacity index values. Our data demonstrate that the negative prepandemic human conditions, and the low scores of both annual temperature and UV index in many countries were the key factors behind high Covid-19 mortality, and they can be expressed as a simple index of anti-Covid capacity of a country that can predict the death-associated severity of Covid-19 disease, and thus, according to a country’s geographic latitude.

  8. Data_Sheet_1_Adjusting Reported COVID-19 Deaths for the Prevailing Routine...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hemant Deepak Shewade; Giridara Gopal Parameswaran; Archisman Mazumder; Mohak Gupta (2023). Data_Sheet_1_Adjusting Reported COVID-19 Deaths for the Prevailing Routine Death Surveillance in India.docx [Dataset]. http://doi.org/10.3389/fpubh.2021.641991.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Hemant Deepak Shewade; Giridara Gopal Parameswaran; Archisman Mazumder; Mohak Gupta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    In India, the “low mortality” narrative based on the reported COVID-19 deaths may be causing more harm than benefit. The extent to which COVID-19 deaths get reported depends on the coverage of routine death surveillance [death registration along with medical certification of cause of death (MCCD)] and the errors in MCCD. In India, the coverage of routine death surveillance is 18.1%. This is compounded by the fact that COVID-19 death reporting is focused among reported cases and the case detection ratio is low. To adjust for the coverage of routine death surveillance and errors in MCCD, we calculated a correction (multiplication) factor at national and state level to produce an estimated number of COVID-19 deaths. As on July 31, 2020, we calculated the infection fatality ratio (IFR) for India (0.58:100–1.16:100) using these estimated COVID-19 deaths; this is comparable with the IFR range in countries with near perfect routine death surveillance. We recommend the release of excess deaths data during COVID-19 (at least in states with high death registration) and post-mortem COVID-19 testing as a surveillance activity for a better understanding of under-reporting. In its absence, we should adjust reported COVID-19 deaths for the coverage of routine death surveillance and errors in MCCD. This way we will have a clear idea of the true burden of deaths and our public health response will never be inadequate. We recommend that “reported” or “estimated” is added before the COVID-19 death data and related indicators for better clarity and interpretation.

  9. d

    Mathematical models of Covid-19 mortality based on geographic latitude,...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Errasfa, Mourad (2023). Mathematical models of Covid-19 mortality based on geographic latitude, climate, and population factors point to a possible protective effect of UV light against the SARS-CoV-2 [Dataset]. http://doi.org/10.7910/DVN/GSENEK
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Errasfa, Mourad
    Description

    ABSTRACT Background : The Covid-19 pandemic has caused very high death tolls across the world in the last two years. Geographic latitude, climate factors, and other human related conditions such as epidemiologic and demographic history are taught to have played a role in the prevalence of Covid-19. Objective : This observational study aimed to investigate possible relations between geographic latitude-associated climate factors and Covid-19 death numbers in 29 countries. The study also aimed to investigate the relationship between geographic latitude and the history of epidemiologic (cancer, Alzheimer's disease) and demographic factors (birth rate, mortality rate, fertility rate, people aged 65 and over), as well as alcohol intake habits. And finally, the study also aimed to evaluate the relationships between epidemiologic and demographic factors, as well as alcohol intake habits with Covid-19 deaths. Methods : We sought the Covid-19 death toll in 29 countries in Europe, Africa, and the Middle East (located in both hemispheres and between the meridian lines "-15°" and "+50°"). We obtained the death numbers for Covid-19 and other geographic (latitude, longitude) and climate factors (average annual temperature, sunshine hours, and UV index) and epidemiologic and demographic parameters as well as data on alcohol intake per capita from official web pages. Based on records of epidemiologic and demographic history, and alcohol intake data, we have calculated a General Immune Capacity (GIC) score for each country. Geographic latitude and climate factors were plotted against each of Covid-19 death numbers, epidemiologic and demographic parameters, and alcohol intake per capita. Data was analysed by simple linear regression or polynomial regression. All statistical data was collected using Microsoft Excell software (2016). Results : Our observational study found higher death numbers in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line and low latitudes. When the Covid-19 death numbers were plotted against the geographic latitude of each country, an inverted bell-shaped curve was obtained (coefficient of determination R2=0.553). In contrast, bell-shaped curves were obtained when latitude was plotted against annual average temperature (coefficient of determination R2= 0.91), average annual sunshine hours (coefficient of determination R2= 0.79) and average annual UV index (coefficient of determination R2= 0.89). In addition, plotting the latitude of each country against the General Immune Capacity score of each country gave an inverted bell-shaped curve (coefficient of determination R2=0.755). Linear regression analysis of the General Immune Capacity score of each country and its Covid-19 deaths showed a very significant negative correlation (coefficient of determination R² = 0,71, p=6.79x10-9). Linear regression analysis of the Covid-19 death number plotted against the average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations with the following coefficients of determination: (R2 = 0.69, p = 1.94x10-8), (R2 = 0.536, p = 6.31x10-6) and (R2 = 0.599, p = 8.30x10-7), respectively. Linear regression analysis of the General Immune Capacity score of each country plotted against its average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations, with the following coefficients of determination: (R2 = 0.86, p = 3.63x10-13), (R2 = 0.69, p = 2.18x10-8) and (R2 = 0.77, p= 2.47x10-10), respectively. Conclusion : The results of the present study prove that at certain geographic latitudes and their three associated climate parameters are negatively correlated to Covid-19 mortality. On the other hand, our data showed that the General Immune Capacity score, which includes many human related parameters, is inversely correlated to Covid-19 mortality. Likewise, geographic location and health and demographic history were key elements in the prevalence of the Covid-19 pandemic in a given country. On the other hand, the study points to the possible protective role of UV light against Covid-19. The therapeutic potential of UV light against the Covid-19 associated with SARS-Cov-2 is discussed.

  10. f

    DataSheet1_Not One Pandemic: A Multilevel Mixture Model Investigation of the...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Holmes Finch; Maria E. Hernández Finch; Katherine Mytych (2023). DataSheet1_Not One Pandemic: A Multilevel Mixture Model Investigation of the Relationship Between Poverty and the Course of the COVID-19 Pandemic Death Rate in the United States.docx [Dataset]. http://doi.org/10.3389/fsoc.2021.629042.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Holmes Finch; Maria E. Hernández Finch; Katherine Mytych
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The COVID-19 pandemic, which began in China in late 2019, and subsequently spread across the world during the first several months of 2020, has had a dramatic impact on all facets of life. At the same time, it has not manifested in the same way in every nation. Some countries experienced a large initial spike in cases and deaths, followed by a rapid decline, whereas others had relatively low rates of both outcomes throughout the first half of 2020. The United States experienced a unique pattern of the virus, with a large initial spike, followed by a moderate decline in cases, followed by second and then third spikes. In addition, research has shown that in the United States the severity of the pandemic has been associated with poverty and access to health care services. This study was designed to examine whether the course of the pandemic has been uniform across America, and if not how it differed, particularly with respect to poverty. Results of a random intercept multilevel mixture model revealed that the pandemic followed four distinct paths in the country. The least ethnically diverse (85.1% white population) and most rural (82.8% rural residents) counties had the lowest death rates (0.06/1000) and the weakest link between deaths due to COVID-19 and poverty (b = 0.03). In contrast, counties with the highest proportion of urban residents (100%), greatest ethnic diversity (48.2% nonwhite), and highest population density (751.4 people per square mile) had the highest COVID-19 death rates (0.33/1000), and strongest relationship between the COVID-19 death rate and poverty (b = 46.21). Given these findings, American policy makers need to consider developing responses to future pandemics that account for local characteristics. These responses must take special account of pandemic responses among people of color, who suffered the highest death rates in the nation.

  11. Table_1_The Determinants of the Low COVID-19 Transmission and Mortality...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yagai Bouba; Emmanuel Kagning Tsinda; Maxime Descartes Mbogning Fonkou; Gideon Sadikiel Mmbando; Nicola Luigi Bragazzi; Jude Dzevela Kong (2023). Table_1_The Determinants of the Low COVID-19 Transmission and Mortality Rates in Africa: A Cross-Country Analysis.docx [Dataset]. http://doi.org/10.3389/fpubh.2021.751197.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Yagai Bouba; Emmanuel Kagning Tsinda; Maxime Descartes Mbogning Fonkou; Gideon Sadikiel Mmbando; Nicola Luigi Bragazzi; Jude Dzevela Kong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: More than 1 year after the beginning of the international spread of coronavirus 2019 (COVID-19), the reasons explaining its apparently lower reported burden in Africa are still to be fully elucidated. Few studies previously investigated the potential reasons explaining this epidemiological observation using data at the level of a few African countries. However, an updated analysis considering the various epidemiological waves and variables across an array of categories, with a focus on African countries might help to better understand the COVID-19 pandemic on the continent. Thus, we investigated the potential reasons for the persistently lower transmission and mortality rates of COVID-19 in Africa.Methods: Data were collected from publicly available and well-known online sources. The cumulative numbers of COVID-19 cases and deaths per 1 million population reported by the African countries up to February 2021 were used to estimate the transmission and mortality rates of COVID-19, respectively. The covariates were collected across several data sources: clinical/diseases data, health system performance, demographic parameters, economic indicators, climatic, pollution, and radiation variables, and use of social media. The collinearities were corrected using variance inflation factor (VIF) and selected variables were fitted to a multiple regression model using the R statistical package.Results: Our model (adjusted R-squared: 0.7) found that the number of COVID-19 tests per 1 million population, GINI index, global health security (GHS) index, and mean body mass index (BMI) were significantly associated (P < 0.05) with COVID-19 cases per 1 million population. No association was found between the median life expectancy, the proportion of the rural population, and Bacillus Calmette–Guérin (BCG) coverage rate. On the other hand, diabetes prevalence, number of nurses, and GHS index were found to be significantly associated with COVID-19 deaths per 1 million population (adjusted R-squared of 0.5). Moreover, the median life expectancy and lower respiratory infections rate showed a trend towards significance. No association was found with the BCG coverage or communicable disease burden.Conclusions: Low health system capacity, together with some clinical and socio-economic factors were the predictors of the reported burden of COVID-19 in Africa. Our results emphasize the need for Africa to strengthen its overall health system capacity to efficiently detect and respond to public health crises.

  12. d

    Data from: The scale and dynamics of COVID-19 epidemics across Europe

    • search.dataone.org
    • datadryad.org
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Dye (2025). The scale and dynamics of COVID-19 epidemics across Europe [Dataset]. http://doi.org/10.5061/dryad.f1vhhmgv6
    Explore at:
    Dataset updated
    Apr 27, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Christopher Dye
    Time period covered
    Jan 1, 2020
    Description

    The number of COVID-19 deaths reported from European countries has varied more than 100-fold. In terms of coronavirus transmission, the relatively low death rates in some countries could be due to low intrinsic (e.g. low population density) or imposed contact rates (e.g. non-pharmaceutical interventions) among individuals, or because fewer people were exposed or susceptible to infection (e.g. smaller populations). Here we develop a flexible empirical model (skew-logistic) to distinguish among these possibilities. We find that countries reporting fewer deaths did not generally have intrinsically lower rates of transmission and epidemic growth, and flatter epidemic curves. Rather, countries with fewer deaths locked down earlier, had shorter epidemics that peaked sooner, and smaller populations. Consequently, as lockdowns are eased we expect, and are starting to see, a resurgence of COVID-19 across Europe.

  13. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  14. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  15. Mortality Moscow 2010-2020

    • kaggle.com
    zip
    Updated May 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vitaliy Malcev (2020). Mortality Moscow 2010-2020 [Dataset]. https://www.kaggle.com/vitaliymalcev/mortaliy-moscow-20102020
    Explore at:
    zip(3873 bytes)Available download formats
    Dataset updated
    May 27, 2020
    Authors
    Vitaliy Malcev
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Moscow
    Description

    Context - Covid data falsification discussion:

    An active discussion about the mortality data in Moscow has erupted in the days. The Moscow Times newspaper drew attention to a significant increase in official mortality rates in April 2020: "Moscow recorded 20% more fatalities in April 2020 compared to its average April mortality total over the past decade, according to newly published preliminary data from Moscow’s civil registry office. The data comes as Russia sees the fastest growth in coronavirus infections in Europe, while its mortality rate remains much lower than in many countries. Moscow, the epicenter of Russia’s coronavirus outbreak, has continued to see daily spikes in new cases despite being under lockdown since March 30. According to the official data, 11,846 people died in Russia’s capital in April of this year, roughly a 20% increase from the 10-year average for April deaths, which is 9,866. The numbers suggest that the city’s statistics of coronavirus deaths may be higher in reality than official numbers indicate. Russia boasts a relatively low coronavirus mortality rate of 0.9%, which experts believe is linked to the way coronavirus-related deaths are counted."

    After this publication have been realesed The Moscow Department of Health has denied the statement of the inaccuracy of counting.:

    First, Moscow is a region that openly publishes mortality data on its websites. Moscow on an initiative basis published data for April before the federal structures did it. Secondly, the comparison of mortality rates in the monthly dynamics is incorrect and is not a clear evidence of any trends. In April 2020, indeed, according to the Civil Registry Office in Moscow, 11,846 death certificates were issued. So, the increase compared to April 2019 amounted to 1841 people, and compared to the same month of 2018 - 985 people, i.e. 2 times less. Thirdly, the diagnosis of coronavirus-infected deaths in Moscow is established after a mandatory autopsy is performed in strict accordance with the Provisional Guidelines of the Russian Ministry of Health.Of the total number of deaths in April 2020, 639 are people whose cause of death is coronavirus infection and its complications, most often pneumonia.It should be emphasized that the pathological autopsy of the dead with suspected CoV-19 in Russia and Moscow is carried out in 100% of cases, unlike most other countries.It is impossible to name the cause of death of COVID-19 in other cases. For example, over 60% of deaths occurred from obvious alternative causes, such as vascular accidents (myocardial infarction and stroke), stage 4 malignant diseases (essentially palliative patients), leukemia, systemic diseases with the development of organ failure (e.g. amyloidosis and terminal renal insufficiency) and other non-curable deadly diseases. Fourth, any seasonal increase in the incidence of SARS, not to mention the pandemic caused by the spread of the new coronavirus, is always accompanied by an increase in mortality. This is due to the appearance of the dead directly from an infectious disease, but to an even greater extent from other diseases, the exacerbation of which and the decompensation of the condition of patients suffering from these diseases also leads to death. In these cases, the infectious onset is a catalyst for the rapid progression of chronic diseases and the manifestation of new diseases. Fifthly, a similar situation with statistics is observed in other countries - mortality from COVID-19 is lower than the overall increase in mortality. According to the official sites of cities:In New York, mortality from coronavirus in April amounted to 11,861 people. At the same time, the total increase in mortality compared to the same period in 2019 is 15709.In London, in April, 3,589 people died with a diagnosis of coronavirus, while the total increase was 5531 Sixth, even if all the additional mortality for April in Moscow is attributed to coronavirus, the mortality from COVID will be slightly more than 3%, which is lower than the official mortality in New York and London (10% and 23%, respectively). Moreover, if you make such a recount in these cities, the mortality rate in them will be 13% and 32%, respectively. Seventh, Moscow is open for discussion and is ready to share experience with both Russian and foreign experts.

    Content

    I think community members would be interested in studying the data on mortality in the Russian capital themselves and conducting a competent statistical check.

    This may be of particular interest in connection with that he [US announced a grant of $ 250 thousand to "expose the disinformation of health care" in Russia](https://www....

  16. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/w/njmz-dpbc/tdwk-ruhb?cur=K0_qEbFad0O&from=gspC_chSyVH
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  17. COVID-19 mortality rate in Latin America 2023, by country

    • statista.com
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 mortality rate in Latin America 2023, by country [Dataset]. https://www.statista.com/statistics/1114603/latin-america-coronavirus-mortality-rate/
    Explore at:
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America
    Description

    Peru is the country with the highest mortality rate due to the coronavirus disease (COVID-19) in Latin America. As of November 13, 2023, the country registered over 672 deaths per 100,000 inhabitants. It was followed by Brazil, with around 331.5 fatal cases per 100,000 population. In total, over 1.76 million people have died due to COVID-19 in Latin America and the Caribbean.

    Are these figures accurate? Although countries like Brazil already rank among the countries most affected by the coronavirus disease (COVID-19), there is still room to believe that the number of cases and deaths in Latin American countries are underreported. The main reason is the relatively low number of tests performed in the region. For example, Brazil, one of the most impacted countries in the world, has performed approximately 63.7 million tests as of December 22, 2022. This compared with over one billion tests performed in the United States, approximately 909 million tests completed in India, or around 522 million tests carried out in the United Kingdom.

    Capacity to deal with the outbreak With the spread of the Omicron variant, the COVID-19 pandemic is putting health systems around the world under serious pressure. The lack of equipment to treat acute cases, for instance, is one of the problems affecting Latin American countries. In 2019, the number of ventilators in hospitals in the most affected countries ranged from 25.23 per 100,000 inhabitants in Brazil to 5.12 per 100,000 people in Peru.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  18. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  19. a

    Data from: All-Cause Mortality

    • ph-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +1more
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). All-Cause Mortality [Dataset]. https://ph-lacounty.hub.arcgis.com/datasets/all-cause-mortality
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  20. d

    ARCHIVED: COVID-19 Cases by Geography Over Time

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases by Geography Over Time [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-by-geography-and-date
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents. Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date). COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date. Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are spec

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
Organization logo

COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

Explore at:
163 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 13, 2022
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

The difficulties of death figures

This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

Where are these numbers coming from?

The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

Search
Clear search
Close search
Google apps
Main menu