Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
This file contains the provisional percent of total deaths by week for COVID-19, Influenza, and Respiratory Syncytial Virus for deaths occurring among residents in the United States. Provisional data are based on non-final counts of deaths based on the flow of mortality data in National Vital Statistics System.
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
Corona virus cases in the US is stacking up higher and higher. Understanding this virus is crucial to stopping it's spread.
The dataset shows, deaths involving coronavirus disease 2019 (COVID-19), pneumonia, and influenza reported to NCHS by sex and age group and state.
Credits to this data set comes from : https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.
This dataset tracks the updates made on the dataset "Provisional Percent of Deaths for COVID-19, Influenza, and RSV by Select Characteristics" as a repository for previous versions of the data and metadata.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
References
Effective September 27, 2023, this dataset will be updated weekly on Thursdays. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by week ending date and by state
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Provisional Death Counts for Influenza, Pneumonia, and COVID-19’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c78f3ba6-04af-4ecd-bd87-4fdfc6a97344 on 12 February 2022.
--- Dataset description provided by original source is as follows ---
Deaths counts for influenza, pneumonia, and coronavirus disease 2019 (COVID-19) reported to NCHS by week ending date, by state and HHS region, and age group.
--- Original source retains full ownership of the source dataset ---
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Effective June 28, 2023, this dataset will no longer be updated. Data deaths by place of death are available in this dataset https://data.cdc.gov/NCHS/d/4va6-ph5s. Deaths involving COVID-19, pneumonia and influenza reported to NCHS by place of death and state, United States.
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive
, death
and totalTestResults
from the API for, respectively, Infected
, Deaths
and Tested
in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
--- Original source retains full ownership of the source dataset ---
Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by race, age, and jurisdiction of occurrence.
The Chicago Department of Public Health (CDPH) receives weekly deidentified provisional death certificate data for all deaths that occur in Chicago, which can include both Chicago and non-Chicago residents from the Illinois Department of Public Health (IDPH) Illinois Vital Records System (IVRS). CDPH scans for keywords to identify deaths with COVID-19, influenza, or respiratory syncytial virus (RSV) listed as an immediate cause of death, contributing factor, or other significant condition. The percentage of all reported deaths that are attributed to COVID-19, influenza, or RSV is calculated as the number of deaths for each respective disease divided by the number of deaths from all causes, multiplied by 100. This dataset reflects death certificates that have been submitted to IVRS at the time of transmission to CDPH each week – data from previous weeks are not updated with any new submissions to IVRS. As such, estimates in this dataset may differ from those reported through other sources. This dataset can be used to understand trends in COVID-19, influenza, and RSV mortality in Chicago but does not reflect official death statistics. Source: Provisional deaths from the Illinois Department of Public Health Illinois Vital Records System.
This dataset shows the provisional COVID-19 deaths by sex and age. The data is about deaths involving coronavirus disease (COVID-19), pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.
Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.
The report is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.
Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.
Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).
CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.
Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.
Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.
Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.
References
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Since December 2019, COVID-19 has aroused global attention. Studies show the link between obesity and severe outcome of influenza and COVID-19. Thus, we aimed to compare the impacts of obesity on the severity and mortality of influenza and COVID-19 by performing a meta-analysis. A systematic search was performed in MEDLINE, EMASE, ClinicalTrials.gov, and Web of Science from January 2009 to July 2020. The protocol was registered onto PROSPERO (CRD42020201461). After selection, 46 studies were included in this meta-analysis. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were analyzed. We found obesity was a risk factor for the severity and mortality of influenza (ORsevere outcome = 1.56, CI: 1.28-1.90; ORmortality = 1.99, CI: 1.15-3.46). For COVID-19, obesity was a significant risk factor only for severe outcome (OR = 2.07, CI: 1.53-2.81) but not for mortality (OR = 1.57, CI: 0.85-2.90). Compared with obesity, morbid obesity was linked with a higher risk for the severity and mortality of both influenza (OR = 1.40, CI: 1.10-1.79) and COVID-19 (OR = 3.76, CI: 2.67-5.28). Thus, obesity should be recommended as a risk factor for the prognosis assessment of COVID-19. Special monitoring and earlier treatment should be implemented in patients with obesity and COVID-19.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Method
The dataset contains several confirmed COVID-19 cases, number of deaths, and death rate in six regions. The objective of the study is to compare the number of confirmed cases in Africa to other regions.
Death rate = Total number of deaths from COVID-19 divided by the Total Number of infected patients.
The study provides evidence for the country-level in six regions by the World Health Organisation's classification.
Findings
Based on the descriptive data provided above, we conclude that the lack of tourism is one of the key reasons why COVID-19 reported cases are low in Africa compared to other regions. We also justified this claim by providing evidence from the economic freedom index, which indicates that the vast majority of African countries recorded a low index for a business environment. On the other hand, we conclude that the death rate is higher in the African region compared to other regions. This points to issues concerning health-care expenditure, low capacity for testing for COVID-19, and poor infrastructure in the region.
Apart from COVID-19, there are significant pre-existing diseases, namely; Malaria, Flu, HIV/AIDS, and Ebola in the continent. This study, therefore, invites the leaders to invest massively in the health-care system, infrastructure, and human capital in order to provide a sustainable environment for today and future generations. Lastly, policy uncertainty has been a major issue in determining a sustainable development goal on the continent. This uncertainty has differentiated Africa to other regions in terms of stepping up in the time of global crisis.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Examining Population Health During the COVID-19 Pandemic: All-Cause, Pneumonia and Influenza, and Road Traffic Deaths in Taiwan Raw Data
Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.