29 datasets found
  1. Provisional Death Counts for Influenza, Pneumonia, and COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

  2. Provisional Percent of Deaths for COVID-19, Influenza, and RSV

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional Percent of Deaths for COVID-19, Influenza, and RSV [Dataset]. https://catalog.data.gov/dataset/provisional-percent-of-deaths-for-covid-19-influenza-and-rsv
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains the provisional percent of total deaths by week for COVID-19, Influenza, and Respiratory Syncytial Virus for deaths occurring among residents in the United States. Provisional data are based on non-final counts of deaths based on the flow of mortality data in National Vital Statistics System.

  3. COVID-19 Deaths in the US

    • kaggle.com
    Updated Aug 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward Zhang (2020). COVID-19 Deaths in the US [Dataset]. https://www.kaggle.com/sshikamaru/covid19-deaths-in-the-us/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 15, 2020
    Dataset provided by
    Kaggle
    Authors
    Edward Zhang
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Area covered
    United States
    Description

    Context

    Corona virus cases in the US is stacking up higher and higher. Understanding this virus is crucial to stopping it's spread.

    Content

    The dataset shows, deaths involving coronavirus disease 2019 (COVID-19), pneumonia, and influenza reported to NCHS by sex and age group and state.

    Acknowledgements

    Credits to this data set comes from : https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-hcku

  4. Deaths due to COVID-19 compared with deaths from influenza and pneumonia

    • cy.ons.gov.uk
    • ons.gov.uk
    xlsx
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Deaths due to COVID-19 compared with deaths from influenza and pneumonia [Dataset]. https://cy.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19comparedwithdeathsfrominfluenzaandpneumonia
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.

  5. Provisional Percent of Deaths for COVID-19, Influenza, and RSV by Select...

    • healthdata.gov
    application/rdfxml +5
    Updated Jul 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Provisional Percent of Deaths for COVID-19, Influenza, and RSV by Select Characteristics - kzpi-bkmi - Archive Repository [Dataset]. https://healthdata.gov/dataset/Provisional-Percent-of-Deaths-for-COVID-19-Influen/c8k7-9m4i
    Explore at:
    application/rdfxml, json, tsv, application/rssxml, xml, csvAvailable download formats
    Dataset updated
    Jul 19, 2025
    Description

    This dataset tracks the updates made on the dataset "Provisional Percent of Deaths for COVID-19, Influenza, and RSV by Select Characteristics" as a repository for previous versions of the data and metadata.

  6. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  7. Provisional COVID-19 Death Counts by Week Ending Date and State

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Death Counts by Week Ending Date and State [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-by-week-ending-date-and-state
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will be updated weekly on Thursdays. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by week ending date and by state

  8. A

    ‘Provisional Death Counts for Influenza, Pneumonia, and COVID-19’ analyzed...

    • analyst-2.ai
    Updated Feb 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Provisional Death Counts for Influenza, Pneumonia, and COVID-19’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-provisional-death-counts-for-influenza-pneumonia-and-covid-19-fb2f/latest
    Explore at:
    Dataset updated
    Feb 12, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Provisional Death Counts for Influenza, Pneumonia, and COVID-19’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c78f3ba6-04af-4ecd-bd87-4fdfc6a97344 on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    Deaths counts for influenza, pneumonia, and coronavirus disease 2019 (COVID-19) reported to NCHS by week ending date, by state and HHS region, and age group.

    --- Original source retains full ownership of the source dataset ---

  9. Provisional COVID-19 Deaths by Sex and Age

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://data.virginia.gov/dataset/provisional-covid-19-deaths-by-sex-and-age
    Explore at:
    rdf, xsl, json, csvAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  10. Provisional COVID-19 Deaths by Place of Death and State

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Place of Death and State [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-by-place-of-death-and-state
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective June 28, 2023, this dataset will no longer be updated. Data deaths by place of death are available in this dataset https://data.cdc.gov/NCHS/d/4va6-ph5s. Deaths involving COVID-19, pneumonia and influenza reported to NCHS by place of death and state, United States.

  11. Provisional Death Counts for Influenza, Pneumonia, and COVID-19

    • data.virginia.gov
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

  12. A

    ‘COVID-19 State Data’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID-19 State Data’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-state-data-85fa/4a8c7dec/?iid=002-627&v=presentation
    Explore at:
    Dataset updated
    Mar 31, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

    --- Original source retains full ownership of the source dataset ---

  13. Provisional COVID-19 Deaths by Race and Hispanic Origin, and Age

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Race and Hispanic Origin, and Age [Dataset]. https://catalog.data.gov/dataset/deaths-involving-coronavirus-disease-2019-covid-19-by-race-and-hispanic-origin-group-and-a
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by race, age, and jurisdiction of occurrence.

  14. d

    Provisional Deaths Due to Respiratory Illnesses

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). Provisional Deaths Due to Respiratory Illnesses [Dataset]. https://catalog.data.gov/dataset/provisional-deaths-due-to-respiratory-illnesses
    Explore at:
    Dataset updated
    Jul 19, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    The Chicago Department of Public Health (CDPH) receives weekly deidentified provisional death certificate data for all deaths that occur in Chicago, which can include both Chicago and non-Chicago residents from the Illinois Department of Public Health (IDPH) Illinois Vital Records System (IVRS). CDPH scans for keywords to identify deaths with COVID-19, influenza, or respiratory syncytial virus (RSV) listed as an immediate cause of death, contributing factor, or other significant condition. The percentage of all reported deaths that are attributed to COVID-19, influenza, or RSV is calculated as the number of deaths for each respective disease divided by the number of deaths from all causes, multiplied by 100. This dataset reflects death certificates that have been submitted to IVRS at the time of transmission to CDPH each week – data from previous weeks are not updated with any new submissions to IVRS. As such, estimates in this dataset may differ from those reported through other sources. This dataset can be used to understand trends in COVID-19, influenza, and RSV mortality in Chicago but does not reflect official death statistics. Source: Provisional deaths from the Illinois Department of Public Health Illinois Vital Records System.

  15. Provisional COVID-19 Deaths by Sex and Age

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://www.johnsnowlabs.com/marketplace/provisional-covid-19-deaths-by-sex-and-age/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2020 - 2023
    Area covered
    United States
    Description

    This dataset shows the provisional COVID-19 deaths by sex and age. The data is about deaths involving coronavirus disease (COVID-19), pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  16. Respiratory Virus Weekly Report

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Respiratory Virus Weekly Report [Dataset]. https://data.chhs.ca.gov/dataset/respiratory-virus-weekly-report
    Explore at:
    csv(5047), csv(7620), csv(8159), csv(8783), csv(2444), csv(615), csv(4776), csv(4793), csv(8930), csv(8785), csv(693), csv(690), zipAvailable download formats
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.

    The report is updated each Friday.

    Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.

    Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.

    Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.

    Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).

    CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.

    Weekly hospitalization data are defined as Sunday through Saturday.

    Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.

    Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.

  17. Preliminary 2024-2025 U.S. RSV Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. RSV Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-RSV-Burden-Estimates/sumd-iwm8
    Explore at:
    csv, tsv, application/rdfxml, json, application/rssxml, xmlAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  18. f

    DataSheet_1_Obesity Increases the Severity and Mortality of Influenza and...

    • figshare.com
    • frontiersin.figshare.com
    pdf
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xue Zhao; Xiaokun Gang; Guangyu He; Zhuo Li; You Lv; Qing Han; Guixia Wang (2023). DataSheet_1_Obesity Increases the Severity and Mortality of Influenza and COVID-19: A Systematic Review and Meta-Analysis.pdf [Dataset]. http://doi.org/10.3389/fendo.2020.595109.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Xue Zhao; Xiaokun Gang; Guangyu He; Zhuo Li; You Lv; Qing Han; Guixia Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Since December 2019, COVID-19 has aroused global attention. Studies show the link between obesity and severe outcome of influenza and COVID-19. Thus, we aimed to compare the impacts of obesity on the severity and mortality of influenza and COVID-19 by performing a meta-analysis. A systematic search was performed in MEDLINE, EMASE, ClinicalTrials.gov, and Web of Science from January 2009 to July 2020. The protocol was registered onto PROSPERO (CRD42020201461). After selection, 46 studies were included in this meta-analysis. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were analyzed. We found obesity was a risk factor for the severity and mortality of influenza (ORsevere outcome = 1.56, CI: 1.28-1.90; ORmortality = 1.99, CI: 1.15-3.46). For COVID-19, obesity was a significant risk factor only for severe outcome (OR = 2.07, CI: 1.53-2.81) but not for mortality (OR = 1.57, CI: 0.85-2.90). Compared with obesity, morbid obesity was linked with a higher risk for the severity and mortality of both influenza (OR = 1.40, CI: 1.10-1.79) and COVID-19 (OR = 3.76, CI: 2.67-5.28). Thus, obesity should be recommended as a risk factor for the prognosis assessment of COVID-19. Special monitoring and earlier treatment should be implemented in patients with obesity and COVID-19.

  19. Z

    Why has the number of COVID-19 confirmed cases in Africa been insignificant...

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azeem Oluwaseyi Zubair (2020). Why has the number of COVID-19 confirmed cases in Africa been insignificant compared to other regions? A descriptive analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3788732
    Explore at:
    Dataset updated
    May 13, 2020
    Dataset provided by
    Abdul-Rahim Abdul Samad
    Muritala Olaniyi Zubair
    Azeem Oluwaseyi Zubair
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Method

    The dataset contains several confirmed COVID-19 cases, number of deaths, and death rate in six regions. The objective of the study is to compare the number of confirmed cases in Africa to other regions.

    Death rate = Total number of deaths from COVID-19 divided by the Total Number of infected patients.

    The study provides evidence for the country-level in six regions by the World Health Organisation's classification.

    Findings

    Based on the descriptive data provided above, we conclude that the lack of tourism is one of the key reasons why COVID-19 reported cases are low in Africa compared to other regions. We also justified this claim by providing evidence from the economic freedom index, which indicates that the vast majority of African countries recorded a low index for a business environment. On the other hand, we conclude that the death rate is higher in the African region compared to other regions. This points to issues concerning health-care expenditure, low capacity for testing for COVID-19, and poor infrastructure in the region.

    Apart from COVID-19, there are significant pre-existing diseases, namely; Malaria, Flu, HIV/AIDS, and Ebola in the continent. This study, therefore, invites the leaders to invest massively in the health-care system, infrastructure, and human capital in order to provide a sustainable environment for today and future generations. Lastly, policy uncertainty has been a major issue in determining a sustainable development goal on the continent. This uncertainty has differentiated Africa to other regions in terms of stepping up in the time of global crisis.

  20. m

    M20-7788 (Examining Population Health During the COVID-19 Pandemic:...

    • data.mendeley.com
    Updated Jan 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mattia Sanna (2021). M20-7788 (Examining Population Health During the COVID-19 Pandemic: All-Cause, Pneumonia and Influenza, and Road Traffic Deaths in Taiwan) raw data [Dataset]. http://doi.org/10.17632/w3tnwffjyz.1
    Explore at:
    Dataset updated
    Jan 27, 2021
    Authors
    Mattia Sanna
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Area covered
    Taiwan
    Description

    Examining Population Health During the COVID-19 Pandemic: All-Cause, Pneumonia and Influenza, and Road Traffic Deaths in Taiwan Raw Data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://catalog.data.gov/dataset/provisional-death-counts-for-influenza-pneumonia-and-covid-19
Organization logo

Provisional Death Counts for Influenza, Pneumonia, and COVID-19

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

Search
Clear search
Close search
Google apps
Main menu