100+ datasets found
  1. COVID-19 and Long COVID death rates in the United States in 2021-2022, by...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group [Dataset]. https://www.statista.com/statistics/1401404/death-rates-from-covid-19-and-long-covid-in-the-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    As of June 2022, death rates from COVID-19 and Long COVID per million people in the United States were both higher among individuals aged 85 and older. Within the analyzed period, approximately 117 people per million in this age group died due to Long COVID, and around 14,122 individuals per million died from COVID-19. This statistic shows the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by age group.

  2. COVID-19 and Long COVID death rates in the United States in 2021-2022, by...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 and Long COVID death rates in the United States in 2021-2022, by gender [Dataset]. https://www.statista.com/statistics/1401429/death-rates-from-covid-19-and-long-covid-in-the-us-by-gender/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    Between July 2021 and June 2022, males in the United States reported higher death rates per million population than females for both COVID-19 and Long COVID. During this period, the death rate from COVID-19 for males was around 1,312 per million population, while roughly 7.3 men per million people died due to Long COVID. This statistic displays the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by gender.

  3. Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-and-rates-by-month-jurisdiction-of-residence-and-demogra
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  4. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and ethnicity [Dataset]. https://www.statista.com/statistics/1401468/death-rates-from-covid-19-and-long-covid-in-the-us-by-race-and-ethnicity/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    From July 2021 to June 2022, American Indians or Alaska Natives were the ethnic group reporting the highest death rate from Long COVID per million population in the United States. Among this ethnic group, the mortality rate from COVID-19 was about 1,795 deaths per million population, while nearly 15 individuals per million died due to Long COVID. This statistic shows the death rates from COVID-19 and Long COVID per million population in the U.S. from July 2021 to June 2022, by race and ethnicity.

  6. d

    COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-tests-cases-and-deaths-by-town
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, tests, and associated deaths from COVID-19 that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. The case rate per 100,000 includes probable and confirmed cases. Probable and confirmed are defined using the CSTE case definition, which is available online: https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-19.pdf The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 CO

  7. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  8. COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by...

    • statista.com
    Updated Mar 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race [Dataset]. https://www.statista.com/statistics/1133269/coronavirus-covid19-death-rate-by-race-date-us/
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, the cumulative mortality rate of COVID-19 on March 2, 2021 was approximately 180 deaths per 100,000 population for Black Americans, compared to 150 per 100,000 population among Whites. This statistic shows the COVID-19 death rate per 100,000 population in the United States from December 8, 2020 to March 2, 2021, by race and ethnicity.

  9. Comparing the risk of death involving coronavirus (COVID-19) by variant,...

    • gov.uk
    Updated Feb 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Comparing the risk of death involving coronavirus (COVID-19) by variant, England: December 2021 [Dataset]. https://www.gov.uk/government/statistics/comparing-the-risk-of-death-involving-coronavirus-covid-19-by-variant-england-december-2021
    Explore at:
    Dataset updated
    Feb 24, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Area covered
    England
    Description

    Official statistics are produced impartially and free from political influence.

  10. f

    Data from: Maternal Deaths from COVID-19 in Brazil: Increase during the...

    • scielo.figshare.com
    tiff
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos André Scheler; Michelle Garcia Discacciati; Diama Bhadra Vale; Giuliane Jesus Lajos; Fernanda Garanhani Surita; Julio Cesar Teixeira (2023). Maternal Deaths from COVID-19 in Brazil: Increase during the Second Wave of the Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.20495346.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carlos André Scheler; Michelle Garcia Discacciati; Diama Bhadra Vale; Giuliane Jesus Lajos; Fernanda Garanhani Surita; Julio Cesar Teixeira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Objective To compare death rates by COVID-19 between pregnant or postpartum and nonpregnant women during the first and second waves of the Brazilian pandemic. Methods In the present population-based evaluation data from the Sistema de Informação da Vigilância Epidemiológica da Gripe (SIVEP-Gripe, in the Portuguese acronym), we included women with c (ARDS) by COVID-19: 47,768 in 2020 (4,853 obstetric versus 42,915 nonobstetric) and 66,689 in 2021 (5,208 obstetric versus 61,481 nonobstetric) and estimated the frequency of in-hospital death. Results We identified 377 maternal deaths in 2020 (first wave) and 804 in 2021 (second wave). The death rate increased 2.0-fold for the obstetric (7.7 to 15.4%) and 1.6-fold for the nonobstetric groups (13.9 to 22.9%) from 2020 to 2021 (odds ratio [OR]: 0.52; 95% confidence interval [CI]: 0.47–0.58 in 2020 and OR: 0.61; 95%CI: 0.56– 0.66 in 2021; p < 0.05). In women with comorbidities, the death rate increased 1.7-fold (13.3 to 23.3%) and 1.4-fold (22.8 to 31.4%) in the obstetric and nonobstetric groups, respectively (OR: 0.52; 95%CI: 0.44–0.61 in 2020 to OR: 0.66; 95%CI: 0.59–0.73 in 2021; p

  11. AH Provisional COVID-19 Deaths by Week, Place of Death, and Age

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). AH Provisional COVID-19 Deaths by Week, Place of Death, and Age [Dataset]. https://catalog.data.gov/dataset/ah-place-of-death-by-age-and-week-provisional-counts-of-covid-19-deaths
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Provisional death counts of COVID-19 deaths by place of death, week, and age. Data source: National Center for Health Statistics National Vital Statistics System. Provisional data for 2020-2021.

  12. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  13. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  14. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  15. Data for Figures and Tables in "Bounce backs amid continued losses: Life...

    • zenodo.org
    • data.niaid.nih.gov
    csv, pdf, zip
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2024). Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6861843
    Explore at:
    csv, pdf, zipAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of data in the figures and tables published in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    50-e0diffT.csv

    Figure 1: Life expectancy changes 2019/20 and 2020/21 across countries. The countries are ordered by increasing cumulative life expectancy losses since 2019. Grey dots indicate the average annual LE changes over the years 2015 through 2019.

    51-arriagaT.csv

    Figure 2: Age contributions to life expectancy changes since 2019 separated for 2020 and 2021. The position of the arrowhead indicates the total contribution of mortality changes in a given age group to the change in life expectancy at birth since 2019. The discontinuity in the arrow indicates those contributions separately for the years 2020 and 2021. Annual contributions can compound or reverse. The total life expectancy change from 2019 to 2021 in a given country is the sum of the arrowhead positions across age.

    52-sexdiff.csv

    Figure 3: Change in the female life expectancy advantage from 2019 through 2021. Blue colors indicate an increase and red colors a decrease in the female life expectancy advantage. Muted colors indicate non-significant changes.

    53-e0diffcodT.csv

    Figure 4: Life expectancy deficit in 2021 decomposed into contributions by age and cause of death. LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

    55-vaxe0.csv

    Figure 5: Years of life expectancy deficit during October through December 2021 contributed by ages <60 and 60+ against % of population twice vaccinated by October 1st in the respective age groups. LE deficit is defined as the counterfactual LE from a Lee-Carter mortality forecast based on death rates for the fourth quarter of the years 2015 to 2019 minus observed LE.

    54-tab_arriaga.csv

    Table 1: Months of life expectancy (LE) changes and deficits (labelled ES) since the start of the pandemic attributed to age-specific mortality changes (labelled AT). LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

  16. D

    ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography

    • data.sfgov.org
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health - Population Health Division (2023). ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography [Dataset]. https://data.sfgov.org/COVID-19/ARCHIVED-COVID-19-Cases-and-Deaths-Summarized-by-G/tpyr-dvnc
    Explore at:
    xml, csv, kml, kmz, application/geo+json, xlsxAvailable download formats
    Dataset updated
    Sep 11, 2023
    Dataset authored and provided by
    Department of Public Health - Population Health Division
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.

    On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.

    Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.

    Dataset is cumulative and covers cases going back to 3/2/2020 when testing began.

    Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas

    B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.

    C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.

    D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000

    Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.

    A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.

    Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling basis.

    E. CHANGE LOG

    • 9/11/2023 - data on COVID-19 cases and deaths summarized by geography are no longer being updated. This data is currently through 9/6/2023 and will not include any new data after this date.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “acs_population” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/31/2023 - implemented system updates to streamline and improve our geo-coded data, resulting in small shifts in our case and death data by geography.
    • 1/31/2023 - renamed column “last_updated_at” to “data_as_of”.
    • 2/23/2022 - the New Cases Map dashboard began pulling from this dataset. To access Cases by Geography Over Time, please refer to this dataset.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.
    • 4/16/2021 - dataset updated to refresh with a five-day data lag.

  17. Pre-existing conditions of people who died due to coronavirus (COVID-19),...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Pre-existing conditions of people who died due to coronavirus (COVID-19), England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/preexistingconditionsofpeoplewhodiedduetocovid19englandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.

  18. g

    COVID-19 HPSC Detailed Statistics Profile

    • covid-19.geohive.ie
    • geohive.ie
    • +3more
    Updated Mar 31, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    content_geohive (2020). COVID-19 HPSC Detailed Statistics Profile [Dataset]. https://covid-19.geohive.ie/datasets/d8eb52d56273413b84b0187a4e9117be
    Explore at:
    Dataset updated
    Mar 31, 2020
    Dataset authored and provided by
    content_geohive
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Please see FAQ for latest information on COVID-19 Data Hub data flows: https://covid-19.geohive.ie/pages/helpfaqs.Notice:See the Technical Data Issues section in the FAQ for information about issues in data: https://covid-19.geohive.ie/pages/helpfaqs.Deaths: From 16th May 2022 onwards, reporting of Notified Deaths will be weekly (each Wednesday) with deaths notified since the previous Wednesday reported. This is based on the date on which a death was notified on CIDR, not the date on which the death occurred. Data on deaths by date of death is available on the new HPSC Epidemiology of COVID-19 Data Hub https://epi-covid-19-hpscireland.hub.arcgis.com/.Notice:

    Please be advised that on 29th April 2021, the 'Aged65up' and 'HospitalisedAged65up' fields were removed from this table. The three fields 'Aged65to74', 'Aged75to84', and 'Aged85up' replace the 'Aged65up' field.The three fields 'HospitalisedAged65to74', 'HospitalisedAged75to84' and 'HospitalisedAged85up' replace the 'HospitalisedAged65up' field.Please be advised that on the week beginning 1st March 2021, the values in the following fields in this table were set to zero: 'CommunityTransmission' , 'CloseContact', 'TravelAbroad' and ‘ClustersNotified’. ----------------------------------------------------------------------This feature service contains the up to date Covid-19 Daily Statistics as well as the Profile of Covid-19 Daily Statistics for Ireland, as reported by the Health Protection Surveillance Centre.The Covid-19 Daily Statistics are updated once a week, each Wednesday, which includes data for the full time series. Data on deaths is updated once a week, each Wednesday, which includes data for the full time series.The further breakdown of these counts (age, gender, transmission, etc.) is part of a Daily Statistics Profile of Covid-19, to help identify patterns and trends.The primary Date applies to the following fields:ConfirmedCovidCases, TotalConfirmedCovidCases, ConfirmedCovidDeaths, TotalCovidDeaths, ConfirmedCovidRecovered,SevenDayAverageCases.The StatisticProfileDate applies to the following fields:CovidCasesConfirmed, HospitalisedCovidCases, RequiringICUCovidCases, HealthcareWorkersCovidCases,Clusters Notified,HospitalisedAged5,HospitalisedAged5to14,HospitalisedAged15to24,HospitalisedAged25to34,HospitalisedAged35to44,HospitalisedAged45to54,HospitalisedAged55to64,HospitalisedAged65to74,HospitalisedAged75to84,HospitalisedAged85up,Male, Female, Unknown,Aged1to4, Aged5to14, Aged15to24, Aged25to34, Aged35to44, Aged45to54, Aged55to64, Aged65to74,Aged75to84,Aged85up,MedianAgeCommunityTransmission, CloseContact, TravelAbroad, Total Deaths by Date of Death,Deaths by Date of Death.

  19. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  20. Data_Sheet_8_Toward a Country-Based Prediction Model of COVID-19 Infections...

    • frontiersin.figshare.com
    pdf
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tianshu Gu; Lishi Wang; Ning Xie; Xia Meng; Zhijun Li; Arnold Postlethwaite; Lotfi Aleya; Scott C. Howard; Weikuan Gu; Yongjun Wang (2023). Data_Sheet_8_Toward a Country-Based Prediction Model of COVID-19 Infections and Deaths Between Disease Apex and End: Evidence From Countries With Contained Numbers of COVID-19.pdf [Dataset]. http://doi.org/10.3389/fmed.2021.585115.s008
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Tianshu Gu; Lishi Wang; Ning Xie; Xia Meng; Zhijun Li; Arnold Postlethwaite; Lotfi Aleya; Scott C. Howard; Weikuan Gu; Yongjun Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complexity of COVID-19 and variations in control measures and containment efforts in different countries have caused difficulties in the prediction and modeling of the COVID-19 pandemic. We attempted to predict the scale of the latter half of the pandemic based on real data using the ratio between the early and latter halves from countries where the pandemic is largely over. We collected daily pandemic data from China, South Korea, and Switzerland and subtracted the ratio of pandemic days before and after the disease apex day of COVID-19. We obtained the ratio of pandemic data and created multiple regression models for the relationship between before and after the apex day. We then tested our models using data from the first wave of the disease from 14 countries in Europe and the US. We then tested the models using data from these countries from the entire pandemic up to March 30, 2021. Results indicate that the actual number of cases from these countries during the first wave mostly fall in the predicted ranges of liniar regression, excepting Spain and Russia. Similarly, the actual deaths in these countries mostly fall into the range of predicted data. Using the accumulated data up to the day of apex and total accumulated data up to March 30, 2021, the data of case numbers in these countries are falling into the range of predicted data, except for data from Brazil. The actual number of deaths in all the countries are at or below the predicted data. In conclusion, a linear regression model built with real data from countries or regions from early pandemics can predict pandemic scales of the countries where the pandemics occur late. Such a prediction with a high degree of accuracy provides valuable information for governments and the public.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group [Dataset]. https://www.statista.com/statistics/1401404/death-rates-from-covid-19-and-long-covid-in-the-us-by-age-group/
Organization logo

COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group

Explore at:
Dataset updated
Aug 3, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 1, 2021 - Jun 30, 2022
Area covered
United States
Description

As of June 2022, death rates from COVID-19 and Long COVID per million people in the United States were both higher among individuals aged 85 and older. Within the analyzed period, approximately 117 people per million in this age group died due to Long COVID, and around 14,122 individuals per million died from COVID-19. This statistic shows the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by age group.

Search
Clear search
Close search
Google apps
Main menu