100+ datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. Remote work frequency before and after COVID-19 in the United States 2020

    • statista.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Remote work frequency before and after COVID-19 in the United States 2020 [Dataset]. https://www.statista.com/statistics/1122987/change-in-remote-work-trends-after-covid-in-usa/
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2020
    Area covered
    United States
    Description

    Before the coronavirus (COVID-19) pandemic, 17 percent of U.S. employees worked from home 5 days or more per week, a share that increased to 44 percent during the pandemic. The outbreak of the COVID-19 pandemic accelerated the remote working trend, as quarantines and lockdowns made commuting and working in an office close to impossible for millions around the world. Remote work, also called telework or working from home (WFH), provided a solution, with employees performing their roles away from the office supported by specialized technology, eliminating the commute to an office to remain connected with colleagues and clients. What enables working from home?

    To enable remote work, employees rely on a remote work arrangements that enable hybrid work and make it safe during the COVID-19 pandemic. Technology supporting remote work including laptops saw a surge in demand, video conferencing companies such as Zoom jumped in value, and employers had to consider new communication techniques and resources. Is remote work the future of work?

    The response to COVID-19 has demonstrated that hybrid work models are not necessarily an impediment to productivity. For this reason, there is a general consensus that different remote work models will persist post-COVID-19. Many employers see benefits to flexible working arrangements, including positive results on employee wellness surveys, and potentially reducing office space. Many employees also plan on working from home more often, with 25 percent of respondents to a recent survey expecting remote work as a benefit of employment. As a result, it is of utmost importance to acknowledge any issues that may arise in this context to empower a hybrid workforce and ensure a smooth transition to more flexible work models.

  3. Loss of Work Due to Illness from COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Loss of Work Due to Illness from COVID-19 [Dataset]. https://catalog.data.gov/dataset/loss-of-work-due-to-illness-from-covid-19
    Explore at:
    Dataset updated
    Apr 25, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of loss of work due to illness with coronavirus for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included a question about the inability to work due to being sick or having a family member sick with COVID-19. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor work-loss days and work limitations in the United States. For example, in 2018, 42.7% of adults aged 18 and over missed at least 1 day of work in the previous year due to illness or injury and 9.3% of adults aged 18 to 69 were limited in their ability to work or unable to work due to physical, mental, or emotional problems. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who did not work for pay at a job or business, at any point, in the previous week because either they or someone in their family was sick with COVID-19. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/work.htm#limitations

  4. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  5. z

    COVID-19 and the potential impacts on employment data tables - Dataset -...

    • portal.zero.govt.nz
    Updated Mar 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    portal.zero.govt.nz (2024). COVID-19 and the potential impacts on employment data tables - Dataset - data.govt.nz - discover and use data [Dataset]. https://portal.zero.govt.nz/77d6ef04507c10508fcfc67a7c24be32/dataset/covid-19-and-the-potential-impacts-on-employment-data-tables
    Explore at:
    Dataset updated
    Mar 11, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities. To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest. Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario. The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets. Arataki - potential impacts of COVID-19 Final Report Employment modelling - interactive dashboard The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty. The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn). The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time. Find out more about Arataki, our 10-year plan for the land transport system May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time. Data reuse caveats: as per license. Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19. COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB] Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including: a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4. While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country. Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then. As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.

  6. R

    WageIndicator Survey of Living and Working in Coronavirus Times

    • datasets.iza.org
    • dataverse.iza.org
    zip
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Data Center of IZA (IDSC) (2024). WageIndicator Survey of Living and Working in Coronavirus Times [Dataset]. http://doi.org/10.15185/wif.corona.1
    Explore at:
    zip(1577392), zip(122268054)Available download formats
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Research Data Center of IZA (IDSC)
    License

    https://www.iza.org/wc/dataverse/IIL-1.0.pdfhttps://www.iza.org/wc/dataverse/IIL-1.0.pdf

    Area covered
    Yemen, Gambia, Kuwait, Ukraine, Ecuador, Plurinational State of, Bolivia, Germany, Mexico, Haiti, Burundi
    Description

    WageIndicator is interviewing people around the world to discover what makes the Coronavirus lockdown easier (or tougher), and what is the COVID-19 effect on our jobs, lives and mood. WageIndicator shows coronavirus-induced changes in living and working conditions in over 110 countries on the basis of answers on the following questions among others in the Corona survey: Is your work affected by the corona crisis? Are precautionary measures taken at the workplace? Do you have to work from home? Has your workload increased/decreased? Have you lost your job/work/assignments? The survey contains questions about the home situation of respondents as well as about the possible manifestation of the corona disease in members of the household. Also the effect of having a pet in the house in corona-crisis times is included.

  7. d

    MD COVID-19 - Contact Tracing Cases Reported Employment

    • catalog.data.gov
    • opendata.maryland.gov
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2023). MD COVID-19 - Contact Tracing Cases Reported Employment [Dataset]. https://catalog.data.gov/dataset/md-covid-19-contact-tracing-cases-reported-employment
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    NOTE: THIS LAYER HAS BEEN DEPRECATED (last updated 5/31/2022). This was formerly a weekly update. Summary The number of cases interviewed who had a completed answer to the question asking if they had physically gone to work in the last 14 days during their covidLINK interviews. Description MD COVID-19 - Contact Tracing Cases Reported Employment layer reflects the number of cases interviewed who had a completed answer to the question asking if they had physically gone to work in the last 14 days during their covidLINK interviews. Respondents may indicate more than one category of employment if they have multiple jobs. For a variety of reasons, some individuals choose not to answer particular questions during the course of their interview. Information about how to prevent and reduce COVID-19 transmission in businesses and workplaces — including for both employers and employees — is available from the Centers for Disease Control and Prevention. Note the following regarding select employment categories: Childcare/Education: Includes teachers, babysitters, school administrators, etc. Commercial Construction and Manufacturing: Includes poultry/meat processors, electricians, carpenters, HVAC workers, welders, contractors, painters Healthcare: Includes home healthcare and administrative positions in a healthcare setting Restaurant/Food Service: Includes cooks, waitstaff, food delivery personnel, alcohol delivery services, etc. Retail, Essential Worker: Includes grocery and pharmacy workers Retail, Other: Includes all retail establishments that do not sell food or medicine Transportation: Includes positions related to transport of people or goods Other, Non-Public-Facing: Includes workers that do not have direct interactions with the public, including warehouse workers, some office workers, some car mechanics, etc. Other, Public-Facing: Includes workers who have direct interactions with the public such as, but not limited to, administrative/front desk workers, home repair workers, lawncare workers, security guards, etc. Unknown: Indicates that the interviewer was unable to ascertain the employment category based on the information provided. Answers to interview questions do not provide strong evidence of cause and effect. Due to the nature of COVID-19 and the wide range of scenarios in which a person can become infected, most of the time it will not be possible to pinpoint exactly how and when a case became infected. Though a person may report employment at a particular location, that does not necessarily imply that transmission happened at that location. The covidLINK interview questionnaire is updated as necessary to capture relevant information related to case exposure and potential onward transmission. These revisions should be taken into consideration when evaluating trends in case responses over time. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  8. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    zip
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2020). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states
    Explore at:
    zip(7506633 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.

    • Confirmed Cases

    Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.

    • Dates

    For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.

    • Counties

    In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.

    Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.

    • “Unknown” Counties

    Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.

    Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.

    Geographic Exceptions

    • New York City

    All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.

    • Kansas City, Mo.

    Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.

    • Alameda, Calif.

    Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.

    • Chicago

    All cases and deaths for Chicago are reported as part of Cook County.

    License and Attribution

    In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.

    If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”

    If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

    If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.

    See our LICENSE for the full terms of use for this data.

    This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.

    Contact Us

    If you have questions about the data or licensing conditions, please contact us at:

    covid-data@nytimes.com

    Contributors

    Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.

    Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States

    [ U.S. State-Level Data ([Raw

  9. Post coronavirus employment change forecast in Sweden 2020-2027

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Post coronavirus employment change forecast in Sweden 2020-2027 [Dataset]. https://www.statista.com/statistics/1110884/employment-change-forecast-in-sweden-coronavirus/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Jun 2024
    Area covered
    Sweden
    Description

    After the outbreak of the coronavirus (COVID-19), the employment rate in Sweden had a negative growth of 1.3 percent in 2020, according to numbers from December 2021. Moreover, a forecast from December 2022 shows that the employment rate is predicted to have grown by nearly one percent in 2021. It grew in 2022 and 2023, before falling slightly in 2024 as a consequence of measures against the high inflation rates.

  10. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  11. Z

    INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4047647
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Nishat Anjum
    Nafiz Sadman
    Kishor Datta Gupta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    The headline must have one or more words directly or indirectly related to COVID-19.

    The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.

    The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.

    Avoid taking duplicate reports.

    Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    Remove hyperlinks.

    Remove non-English alphanumeric characters.

    Remove stop words.

    Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics

    No of words per headline

    7 to 20

    No of words per body content

    150 to 2100

    Table 2: Covid-News-BD-NNK data statistics No of words per headline

    10 to 20

    No of words per body content

    100 to 1500

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    In February, both the news paper have talked about China and source of the outbreak.

    StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.

    Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.

    Washington Post discussed global issues more than StarTribune.

    StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.

    While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,

  12. The Pandemic’s Impact on Remote Work & Where We Go From Here [Report]

    • hubstaff.com
    • hurenforen.org
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hubstaff (2020). The Pandemic’s Impact on Remote Work & Where We Go From Here [Report] [Dataset]. https://hubstaff.com/blog/state-of-remote-work-after-pandemic/
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Hubstaffhttps://hubstaff.com/
    Time period covered
    Aug 2020
    Area covered
    United States
    Description

    The pandemic forced millions of people to change the way they work. Wherever possible, companies embraced remote work to keep their employees safe and their businesses open during shelter-in-place orders. Working remotely during a crisis is totally different, even for companies that were already distributed. Fear, stress, and distractions created a less-than-ideal work environment for the hundreds of thousands of people working from home for the first time.

  13. COVID-19 Finance Sector Related Policy Responses

    • datacatalog.worldbank.org
    excel
    Updated Mar 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dmare@worldbank.org (2020). COVID-19 Finance Sector Related Policy Responses [Dataset]. https://datacatalog.worldbank.org/dataset/covid-19-finance-sector-related-policy-responses
    Explore at:
    excelAvailable download formats
    Dataset updated
    Mar 29, 2020
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Description

    Overview of policy measures taken in jurisdictions and by type of measure in support of the financial sector to address the impact of the COVID-19 pandemic. This dataset is updated regularly and remains work in progress. As such, it may contain errors and omissions.

    Compiled by the Finance, Competitiveness & Innovation Global Practice. For inquiries, please reach out to Erik Feyen (efeijen@worldbank.org) and Davide Mare (dmare@worldbank.org).

    Sources: National authorities; Yale, IIF, IMF, OECD, IADB.

  14. d

    COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    Updated May 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-tests-and-deaths-by-zip-code
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown". Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death. For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection. The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code. All data are provisional and subject to change. Information is updated as additional details are received. To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)

  15. d

    MD COVID-19 - Total Cases in Congregate Facility Settings (Nursing Homes,...

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2023). MD COVID-19 - Total Cases in Congregate Facility Settings (Nursing Homes, Assisted Living, State and Local Facilities and Group Homes with +10 Residents) [Dataset]. https://catalog.data.gov/dataset/md-covid-19-total-cases-in-congregate-facility-settings-nursing-homes-assisted-living-stat
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    Summary This layer has been DEPRECATED. (last updated 12/1/2021). Was formerly a weekly update. The Outbreak-Associated Cases in Congregate Living data dashboard on coronavirus.maryland.gov was redesigned on 11/17/21 to align with other outbreak reporting. Visit https://opendata.maryland.gov/dataset/MD-COVID-19-Congregate-Outbreak/ey5n-qn5s to view Outbreak-Associated Cases in Congregate Living data as reported after 11/17/21. Confirmed COVID-19 cases among Maryland residents who live and work in congregate living facilities in Maryland for the reporting period. Description The MD COVID-19 - Total Cases in Congregate Facility Settings data layer is a total of positive COVID-19 test results have been reported to MDH in nursing homes, assisted living facilities, group homes of 10 or more and state and local facilities for the reporting period. Data are reported to MDH by local health departments, the Department of Public Safety and Correctional Services and the Department of Juvenile Services. To appear on the list, facilities report at least one confirmed case of COVID-19 over the prior 14 days. Facilities are removed from the list when health officials determine 14 days have passed with no new cases and no tests pending. The list provides a point-in-time picture of COVID-19 case activity among these facilities. Numbers reported for each facility listed reflect totals ever reported for cases. Data are updated once weekly. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  16. a

    COVID-19 Trends in Each Country-Copy

    • census-unfpapdp.hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://census-unfpapdp.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  17. Covid-19 karakteristieken per casus landelijk

    • data.overheid.nl
    • open.staging.dexspace.nl
    • +3more
    zip
    Updated Dec 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rijksinstituut voor Volksgezondheid en Milieu (Rijk) (2020). Covid-19 karakteristieken per casus landelijk [Dataset]. https://data.overheid.nl/dataset/11634-covid-19-karakteristieken-per-casus-landelijk
    Explore at:
    zip(KB)Available download formats
    Dataset updated
    Dec 22, 2020
    Dataset provided by
    National Institute for Public Health and the Environmenthttps://www.rivm.nl/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Description

    For English, see below

    Nederland heeft voor het SARS-CoV-2 virus (coronavirus) een endemische fase bereikt en de GGD teststraten zijn per 17 maart 2023 gesloten. Daardoor wordt de data vanaf 1 april 2023 niet meer bijgewerkt.

    Bestand vanaf week 40, 2021: COVID-19_casus_landelijk Bestand tot en met week 39, 2021: COVID-19_casus_landelijk_tm Dit bestand wordt vanaf versie 5 niet meer geüpdatet (zie hieronder)

    Beschikbare formaten: .csv en .json Bronsysteem: OSIRIS Algemene Infectieziekten (AIZ)

    Beschrijving bestand: Dit bestand bevat de volgende karakteristieken per positief geteste casus in Nederland: Datum voor statistiek, Leeftijdsgroep, Geslacht, Overlijden, Week van overlijden, Provincie, Meldende GGD

    Het bestand is als volgt opgebouwd: Een record voor elke laboratorium bevestigde COVID-19 patiënt in Nederland, sinds het begin van de pandemie. Vanaf 11 juli 2022 is deze data opgesplitst (zie beschrijving versie 5). Alleen het bestand vanaf week 40, 2021 wordt iedere dinsdag en vrijdag om 16:00 ververst, op basis van de gegevens zoals op 10:00 uur die dag geregistreerd staan in het landelijk systeem voor meldingsplichtige infectieziekten (Osiris AIZ). Het historische bestand (tot en met week 39, 2021) wordt vanaf 11 juli niet meer geüpdatet.

    Beschrijving van de variabelen: Version: Versienummer van de dataset. Wanneer de inhoud van de dataset structureel wordt gewijzigd (dus niet de dagelijkse update of een correctie op record niveau), zal het versienummer aangepast worden (+1) en ook de corresponderende metadata in RIVMdata (https://data.rivm.nl). Versie 2 update (20 januari 2022): - In versie 2 van deze dataset is de variabele ‘hospital_admission’ niet meer beschikbaar. Voor het aantal ziekenhuisopnames wordt verwezen naar de geregistreerde ziekenhuisopnames van Stichting NICE (data.rivm.nl/covid-19/COVID-19_ziekenhuisopnames.html). Versie 3 update (8 februari 2022) - Vanaf 8 februari 2022 worden de positieve SARS-CoV-2 testuitslagen rechtstreeks vanuit CoronIT aan het RIVM gemeld. Ook worden de testuitslagen van andere testaanbieders (zoals Testen voor Toegang) en zorginstellingen (zoals ziekenhuizen, verpleeghuizen en huisartsen) die hun positieve SARS-CoV-2 testuitslagen via het Meldportaal van GGD GHOR invoeren rechtstreeks aan het RIVM gemeld. Meldingen die onderdeel zijn van de bron- en contactonderzoek steekproef en positieve SARS-CoV-2 testuitslagen van zorginstellingen die via zorgmail aan de GGD worden gemeld worden wel via HPZone aan het RIVM gemeld. Vanaf 8 februari wordt de datum van de positieve testuitslag gebruikt en niet meer de datum van melding aan de GGD Versie 4 update (24 maart 2022): - In versie 4 van deze dataset zijn records samengesteld volgens de gemeente herindeling van 24 maart 2022. Zie beschrijving van de variabele Municipal_health_service voor meer informatie. Versie 5 update (11 juli 2022): - Vanaf 11 juli 2022 is deze dataset opgesplitst in twee delen. Het eerste deel bevat de data vanaf het begin van de pandemie tot en met 3 oktober 2021 (week 39) en bevat ‘tm’ in de bestandsnaam. Deze data wordt niet meer geüpdatet. Het tweede deel bevat de data vanaf 4 oktober 2021 (week 40) en wordt iedere werkdag geüpdatet. Versie 6 update (1 september 2022): - Vanaf 1 september 2022 wordt het tweede deel van de data (vanaf week 40 2021) niet meer iedere werkdag geüpdatet, maar op dinsdagen en vrijdagen. De data wordt op deze dagen met terugwerkende kracht bijgewerkt voor de andere dagen. Versie 7 update (3 januari 2023): - Per 1 januari 2023 verzamelt het RIVM geen aanvullende informatie meer. Dit heeft als gevolg dat we vanaf 1 januari 2023 geen overlijdens meer rapporteren en worden de kolommen [Deceased] en [Week of Death] niet meer aangevuld.

    Date_file: Datum en tijd waarop de gegevens zijn gepubliceerd door het RIVM

    Date_statistics: Datum voor statistiek; eerste ziektedag, indien niet bekend, datum lab positief, indien niet bekend, melddatum aan GGD (formaat: jjjj-mm-dd)

    Date_statistics_type: Soort datum die beschikbaar was voor datum voor de variabele "Datum voor statistiek", waarbij: DOO = Date of disease onset : Eerste ziektedag zoals gemeld door GGD. Let op: het is niet altijd bekend of deze eerste ziektedag ook echt al Covid-19 betrof. DPL = Date of first Positive Labresult : Datum van de (eerste) positieve labuitslag. DON = Date of Notification : Datum waarop de melding bij de GGD is binnengekomen.

    Agegroup: Leeftijdsgroep bij leven; 0-9, 10-19, ..., 90+; bij overlijden <50, 50-59, 60-69, 70-79, 80-89, 90+, Unknown = Onbekend

    Sex: Geslacht; Unknown = Onbekend, Male = Man, Female = Vrouw

    Province: Naam van de provincie (op basis van de verblijfplaats van de patiënt)

    Deceased: Overlijden. Unknown = Onbekend, Yes = Ja, No = Nee. Vanaf 1 januari 2023 is deze kolom leeg.

    Week of Death : Week van overlijden. YYYYMM volgens ISO-week notatie (start op maandag t/m zondag). Vanaf 1 januari 2023 is deze kolom leeg.

    Municipal_health_service: GGD die de melding heeft gedaan. Vanaf 24 maart 2022 is dit bestand samengesteld volgens de gemeente indeling van 24 maart 2022. Gemeente Weesp is opgegaan in gemeente Amsterdam. Met deze indeling is de veiligheidsregio Gooi- en Vechtstreek kleiner geworden en de veiligheidsregio Amsterdam-Amstelland groter; GGD Amsterdam is groter geworden en GGD Gooi- en Vechtstreek is kleiner geworden (https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/overig/gemeentelijke-indelingen-per-jaar/indeling-per-jaar/gemeentelijke-indeling-op-1-januari-2022).

    Covid-19 characteristics per case, nationwide

    The Netherlands has reached an endemic phase for the SARS-CoV-2 virus (coronavirus) and the PHS testing facilities will be closed as of March 17, 2023. As a result, the data will no longer be updated from 1 April 2023.

    File from week 40, 2021: COVID-19_case_landelijk File up to and including week 39, 2021: COVID-19_casus_landelijk_tm This file will no longer be updated from version 5 (see below)

    Available formats: .csv and .json Source system: OSIRIS General Infectious Diseases (AIZ)

    File description: This file contains the following characteristics per positively tested case in the Netherlands: Date for statistics, Age group, Gender, Death, Week of death, Province, Notifying PHS

    The file is structured as follows: A record for every lab-confirmed COVID-19 patient in the Netherlands since the start of the pandemic. From July 11, 2022, this data has been split (see description version 5). Only the file from week 40, 2021 onwards will be updated every Tuesday and Friday at 4:00 PM, based on the data as registered at 10:00 AM that day in the national system for notifiable infectious diseases (Osiris AIZ). The historical file (up to and including week 39, 2021) will no longer be updated from July 11, 2022.

    Description of the variables: Version: Version number of the dataset. When the content of the dataset is structurally changed (so not the daily update or a correction at record level), the version number will be adjusted (+1) and also the corresponding metadata in RIVMdata (https://data.rivm.nl). Version 2 update (January 20, 2022): - In version 2 of this dataset, the variable 'hospital_admission' is no longer available. For the number of hospital admissions, reference is made to the registered hospital admissions of the NICE Foundation (data.rivm.nl/covid-19/COVID-19_ziekenhuis Admissions.html). Version 3 update (February 8, 2022) - From 8 February 2022, positive SARS-CoV-2 test results will be reported directly from CoronIT to the RIVM. The test results of other test providers (such as Testing for Access) and healthcare institutions (such as hospitals, nursing homes and general practitioners) that enter their positive SARS-CoV-2 test results via the Reporting Portal of GGD GHOR are also reported directly to the RIVM. Reports that are part of the source and contact investigation sample and positive SARS-CoV-2 test results from healthcare institutions that are reported to the PHS via healthcare email are reported to the RIVM via HPZone. From 8 February 2022, the date of the positive test result is used and no longer the date of notification to the PHS. Version 4 update (March 24, 2022): - In version 4 of this dataset, records are compiled according to the municipality reclassification of March 24, 2022. See description of the Municipal_health_service variable for more information. Version 5 Update (July 11, 2022): - As of July 11, 2022, this dataset is split into two parts. The first part contains the dates from the start of the pandemic to October 3, 2021 (week 39) and contains "tm" in the file name. This data will no longer be updated. The second part contains the data from October 4, 2021 (week 40) and is updated every working day. Version 6 update (September 1, 2022): - From September 1, 2022, the second part of the data (from week 40 2021) will no longer be updated every working day, but on Tuesdays and Fridays. The data is retroactively updated on these days for the other days. Version 7 update (January 3, 2023): - As of 1 January 2023, the RIVM will no longer collect additional information. As a result, we will no longer report deaths from January 1, 2023 and the [Deceased] and [Week of Death] columns will no longer be completed.

    Date_file: Date and time when the data was published by the RIVM

    Date_statistics: Date for statistics; first day of illness, if not known, date of positive lab result, if not known, reporting date to PHS (format: yyyy-mm-dd)

    Date_statistics_type: Type of date that was available for date for the "Date for statistics" variable, where: DOO = Date of disease onset : First day of illness as reported by PHS. Please note: it is not always known whether this first day of illness actually concerned Covid-19. DPL = Date of first Positive Lab result : Date of the (first) positive lab result. DON = Date of

  18. Change in small business employment due to COVID-19 New York 2020-2021

    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Change in small business employment due to COVID-19 New York 2020-2021 [Dataset]. https://www.statista.com/statistics/1260834/new-york-covid-19-employment-change-small-businesses/
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 15, 2020 - Jul 11, 2021
    Area covered
    New York, United States
    Description

    During the week ending July 11, 2021, 9.4 percent of surveyed small businesses in New York said in an online survey that they had a decrease in their number of paid employees due to the COVID-19 pandemic. In the previous month, 7.3 percent of small businesses in the state reported the same.

  19. United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries –...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/united-states-covid-19-hospitalization-metrics-by-jurisdiction-timeseries-archived
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents daily COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laborat

  20. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-cases-and-deaths-by-state-archived
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (to

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu