Facebook
TwitterThe Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.
Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).
The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.
The survey is focused on three core areas of research:
Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.
If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".
Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.
Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.
The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."
The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:
The survey data will be provided under embargo in both comma-delimited and statistical formats.
Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)
Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.
Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.
Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.
Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Facebook
TwitterThe Household Pulse Survey is designed to deploy quickly and efficiently, collecting data to measure household experiences during the coronavirus pandemic and recovery.
Facebook
TwitterThe ongoing coronavirus pandemic has strongly impacted the shopping behavior of consumers in the United States. A May 2020 survey revealed that 37 percent of respondents had used contactless delivery more than usual. Buying items online and picking them up in store has also gained in popularity, as 29 percent of responding U.S. consumers stated that they had done so more often than usual.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Given the urgent need for data to inform public health messaging to mitigate the spread of the COVID-19 pandemic, this national survey sought to assess the state of COVID-19-related knowledge, beliefs, mental health, substance use changes, and behaviors among a sample of U.S. adults. A survey of U.S. adults was administered online from March 20-30, 2020. The survey collected data on socio-demographic characteristics; COVID-19-related knowledge, awareness and adoption of preventive practices; depression and anxiety (assessed by the Patient Health Questionnaire-4); stress (adapted Impact of Event Scale-6); pessimism; and changes in tobacco and alcohol use.
Facebook
TwitterThe U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterWe summarize the results from an ongoing survey that asks consumers questions related to the recent coronavirus outbreak, including their expectations for how the economy is likely to be affected by the outbreak and how their own behavior has changed in response to it. The survey began in early March, providing a window into how consumers’ responses have evolved in real time since the early days of the acknowledged spread of COVID-19 in the United States. In updating and charting the survey’s findings on the Cleveland Fed’s website going forward, we seek to inform policymakers and researchers about consumers’ beliefs during a time of high uncertainty and unprecedented policy responses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Decision-makers need clear information about the prevalence of coronavirus as well as its impacts on the American people and our society. The COVID Impact Survey will provide national and regional statistics about physical health, mental health, economic security, and social dynamics in the United States.
Facebook
TwitterAs part of an ongoing partnership with the Census Bureau, the National Center for Health Statistics (NCHS) recently added questions to assess the prevalence of post-COVID-19 conditions (long COVID), on the experimental Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. Data collection began on April 23, 2020. Beginning in Phase 3.5 (on June 1, 2022), NCHS included questions about the presence of symptoms of COVID that lasted three months or longer. Phase 3.5 will continue with a two-weeks on, two-weeks off collection and dissemination approach. Estimates on this page are derived from the Household Pulse Survey and show the percentage of adults aged 18 and over who a) as a proportion of the U.S. population, the percentage of adults who EVER experienced post-COVID conditions (long COVID). These adults had COVID and had some symptoms that lasted three months or longer; b) as a proportion of adults who said they ever had COVID, the percentage who EVER experienced post-COVID conditions; c) as a proportion of the U.S. population, the percentage of adults who are CURRENTLY experiencing post-COVID conditions. These adults had COVID, had long-term symptoms, and are still experiencing symptoms; d) as a proportion of adults who said they ever had COVID, the percentage who are CURRENTLY experiencing post-COVID conditions; and e) as a proportion of the U.S. population, the percentage of adults who said they ever had COVID.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic has dramatically altered family life in the United States. Over the long duration of the pandemic, parents had to adapt to shifting work conditions, virtual schooling, the closure of daycare facilities, and the stress of not only managing households without domestic and care supports but also worrying that family members may contract the novel coronavirus. Reports early in the pandemic suggest that these burdens have fallen disproportionately on mothers, creating concerns about the long-term implications of the pandemic for gender inequality and mothers’ well-being. Nevertheless, less is known about how parents’ engagement in domestic labor and paid work has changed throughout the pandemic, what factors may be driving these changes, and what the long-term consequences of the pandemic may be for the gendered division of labor and gender inequality more generally. The Study on U.S. Parents’ Divisions of Labor During COVID-19 (SPDLC) collects longitudinal survey data from partnered U.S. parents that can be used to assess changes in parents’ divisions of domestic labor, divisions of paid labor, and well-being throughout and after the COVID-19 pandemic. The goal of SPDLC is to understand both the short- and long-term impacts of the pandemic for the gendered division of labor, work-family issues, and broader patterns of gender inequality. Survey data for this study is collected using Prolifc (www.prolific.co), an opt-in online platform designed to facilitate scientific research. The sample is comprised U.S. adults who were residing with a romantic partner and at least one biological child (at the time of entry into the study). In each survey, parents answer questions about both themselves and their partners. Wave 1 of SPDLC was conducted in April 2020, and parents who participated in Wave 1 were asked about their division of labor both prior to (i.e., early March 2020) and one month after the pandemic began. Wave 2 of SPDLC was collected in November 2020. Parents who participated in Wave 1 were invited to participate again in Wave 2, and a new cohort of parents was also recruited to participate in the Wave 2 survey. Wave 3 of SPDLC was collected in October 2021. Parents who participated in either of the first two waves were invited to participate again in Wave 3, and another new cohort of parents was also recruited to participate in the Wave 3 survey. This research design (follow-up survey of panelists and new cross-section of parents at each wave) will continue through 2024, culminating in six waves of data spanning the period from March 2020 through October 2024. An estimated total of approximately 6,500 parents will be surveyed at least once throughout the duration of the study. SPDLC data will be released to the public two years after data is collected; Waves 1 and 2 are currently publicly available. Wave 3 will be publicly available in October 2023, with subsequent waves becoming available yearly. Data will be available to download in both SPSS (.sav) and Stata (.dta) formats, and the following data files will be available: (1) a data file for each individual wave, which contains responses from all participants in that wave of data collection, (2) a longitudinal panel data file, which contains longitudinal follow-up data from all available waves, and (3) a repeated cross-section data file, which contains the repeated cross-section data (from new respondents at each wave) from all available waves. Codebooks for each survey wave and a detailed user guide describing the data are also available.
Facebook
TwitterHHS COVID-19 Small Area Estimations Survey - Updated Bivalent Vaccine Audience - Wave 27
Description
The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/hhs-covid-19-small-area-estimations-survey-updated.
Facebook
TwitterBy US Open Data Portal, data.gov [source]
This U.S. Household Pandemic Impacts dataset assesses the mental health care that households in America have been receiving over the past four weeks during the Covid-19 pandemic. Produced by a collaboration between the U.S. Census Bureau, and five other federal agencies, this survey was designed to measure both social and economic impacts of Covid-19 on American households, such as employment status, consumer spending trends, food security levels and housing disruptions among other important factors. The data collected was based on an internet questionnaire which was conducted through emails and text messages sent to randomly selected housing units from across America linked with email addresses or cell phone numbers from the Census Bureau Master Address File Data; all estimates comply with NCHS Data Presentation Standards for Proportions. Be sure to check out more about how U.S Government Works for further details!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be useful to examine the impact of the Covid-19 pandemic on access to and utilization of mental health care by U.S. households in the last 4 weeks.
By studying this dataset, you can gain insight into how people’s mental health has been affected by the pandemic and identify trends based on population subgroups, states, phases of the survey and more.
Instructions for Use: - To get started, open up ‘csv-1’ found in this dataset. This file contains information on access to and utilization of mental health care by U.S households in the last 4 weeks, broken down into 14 different columns (e.g., Indicator, Group, State).
- Familiarize yourself with each column label (e.g., Time Period Start Date), data type (e
- Analyzing the impact of pandemic-induced stress on different demographic groups, such as age and race/ethnicity.
- Comparing the mental health care services received in different states over time.
- Investigating the correlation between socio-economic status and access to mental health care services during Covid-19 pandemic
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:---------------------------|:-------------------------------------------------------------------| | Indicator | The type of indicator being measured. (String) | | Group | The group (by age, gender or race) being measured. (String) | | State | The state where the data was collected. (String) | | Subgroup | A narrower level categorization within Group. (String) | | Phase | Phase number reflective of survey iteration. (Integer) | | Time Period | A label indicating duration captured by survey period. (String) | | Time Period Label | A label indicating duration captured by survey period. (String) | | Time Period Start Date | Beginning date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Time Period End Date | End date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Value | The value of the indicator being measured. (Float) | | LowCI | The lower confidence interval of the value. (Float) | | HighCI | The higher confidence interval of the value. (Float) | | Quartile Range | The quartile range of the value. (String) | | Suppression Flag | A f...
Facebook
TwitterThe COVID-19 web survey has been utilized to track American attitudes on topics related to the COVID-19 pandemic, including well-being. The survey began fielding on March 13, 2020, with daily random samples of U.S. adults, aged 18 and older, who are members of the Gallup Panel. Approximately 1,200 daily completes were collected from March 13 through April 26, 2020. From April 27 to August 16, 2020, approximately 500 daily completes were collected. Starting August 17, 2020, the survey moved from daily surveying to a survey conducted one time per month over a two-week field period (typically the last two weeks of the month). Beginning in 2022, the COVID survey moved to quarterly data collection.
The Gallup Panel COVID-19 Survey table includes survey responses from March 2020 through Q1 2023. Starting in Q2 2023, the original COVID-19 survey was narrowed down to serve as a wellbeing-focused survey (see Gallup Panel Wellbeing Survey table).
Results for this Gallup poll are based on self-administered web surveys conducted with a random sample of U.S. adults aged 18 and older, who are members of the Gallup Panel. The survey was conducted in English. Individuals without Internet access were not covered by this study.
The Gallup Panel is a probability-based, nationally representative panel of U.S. adults. Members are randomly selected using random-digit-dial phone interviews that cover landline and cellphones and address-based sampling methods. The Gallup Panel is not an opt-in panel.
Gallup weights the obtained samples each day to adjust for the probability of select and to correct for nonresponse bias. Nonresponse adjustments are made by adjusting the sample to match the national demographics of gender, age, race, Hispanic ethnicity, education and region. Demographic weighting targets are based on the most recent Current Population Survey figures for the aged-18-and-older U.S. population. Respondents receive a small post-paid incentive of $1 incentive for completing the survey.
Data access is required to view this section.
Facebook
TwitterThe goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic, with millions of Americans compelled to stay home and work remotely, presented an opportunity to explore the dynamics of social relationships in a predominantly remote world. Using the 1972-2022 General Social Surveys, we found that the pandemic significantly disrupted the patterns of social gatherings with family, friends, and neighbors, but only momentarily. Drawing from the nationwide ego-network surveys of 41,033 Americans from 2020 to 2022, we found that the size and composition of core networks remained stable, though political homophily increased among non-kin relationships compared to previous surveys between 1985 and 2016. Critically, heightened remote communication during the initial phase of the pandemic was associated with increased interaction with the same partisans, though political homophily decreased during the later phase of the pandemic when in-person contacts increased. These results underscore the crucial role of social institutions and social gatherings in promoting spontaneous encounters with diverse political backgrounds.
Facebook
Twitterhttps://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/
Household Pulse Survey (HPS): COVID-19 Vaccination among People with Disabilities
Description
Household Pulse Survey (HPS): HPS is a rapid-response survey of adults ages ≥18 years led by the U.S. Census Bureau, in partnership with seven other federal statistical agencies, to measure household experiences during the COVID-19 pandemic. Detailed information on probability sampling using the U.S. Census Bureau’s Master Address File, questionnaires, response rates, and bias… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/household-pulse-survey-hps-covid-19-vaccination-am.
Facebook
TwitterThe United States have recently become the country with the most reported cases of 2019 Novel Coronavirus (COVID-19). This dataset contains daily updated number of reported cases & deaths in the US on the state and county level, as provided by the Johns Hopkins University. In addition, I provide matching demographic information for US counties.
The dataset consists of two main csv files: covid_us_county.csv and us_county.csv. See the column descriptions below for more detailed information. In addition, I've added US county shape files for geospatial plots: us_county.shp/dbf/prj/shx.
covid_us_county.csv: COVID-19 cases and deaths which will be updated daily. The data is provided by the Johns Hopkins University through their excellent github repo. I combined the separate "confirmed cases" and "deaths" files into a single table, removed a few (I think to be) redundant geo identifier columns, and reshaped the data into long format with a single date column. The earliest recorded cases are from 2020-01-22.
us_counties.csv: Demographic information on the US county level based on the (most recent) 2014-18 release of the Amercian Community Survey. Derived via the great tidycensus package.
COVID-19 dataset covid_us_county.csv:
fips: County code in numeric format (i.e. no leading zeros). A small number of cases have NA values here, but can still be used for state-wise aggregation. Currently, this only affect the states of Massachusetts and Missouri.
county: Name of the US county. This is NA for the (aggregated counts of the) territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and Virgin Islands.
state: Name of US state or territory.
state_code: Two letter abbreviation of US state (e.g. "CA" for "California"). This feature has NA values for the territories listed above.
lat and long: coordinates of the county or territory.
date: Reporting date.
cases & deaths: Cumulative numbers for cases & deaths.
Demographic dataset us_counties.csv:
fips, county, state, state_code: same as above. The county names are slightly different, but mostly the difference is that this dataset has the word "County" added. I recommend to join on fips.
male & female: Population numbers for male and female.
population: Total population for the county. Provided as convenience feature; is always the sum of male + female.
female_percentage: Another convenience feature: female / population in percent.
median_age: Overall median age for the county.
Data provided for educational and academic research purposes by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).
The github repo states that:
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
Facebook
TwitterAs of May 17, 2020, a survey revealed that ** percent of adults in the United States with an annual household income under ****** U.S. dollars had picked up an order from a takeout restaurant during the coronavirus pandemic. In comparison, ** percent of U.S. adults with an annual household income over ****** U.S. dollars had done the same. Overall, U.S. adults with a higher income were more likely to have utilized low-contact services during the COVID-19 pandemic.
Facebook
TwitterA survey held in March 2020 revealed that ** percent of participating U.S. adults were closely following news about the coronavirus, whereas just ***** percent said that they were not keeping up with news about the COVID-19 outbreak at all. Adults aged 65 or above were more likely to be following the news regularly, whereas more respondents who were 18 to 29 years old age admitted that they were not keeping up with coronavirus news at all than adults in any other age group.
Facebook
TwitterAccording to the most recently available data, around ********* of Americans feel very confident in their ability to check the accuracy of news stories regarding coronavirus. In an online survey conducted in **********, ** percent of respondents stated they would know how to confirm the accuracy of news and information regarding the COVID-19 pandemic. The majority of participants expressed a moderate level of self confidence in their capacity to fact check, with ** percent somewhat confident.
Facebook
TwitterThe Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.
Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).
The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.
The survey is focused on three core areas of research:
Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.
If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".
Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.
Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.
The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."
The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:
The survey data will be provided under embargo in both comma-delimited and statistical formats.
Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)
Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.
Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.
Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.
Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.