100+ datasets found
  1. c

    What are the COVID-19 trends in my area?

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Feb 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). What are the COVID-19 trends in my area? [Dataset]. https://hub.scag.ca.gov/maps/85989e671a2345d19139a6ca254d7169
    Explore at:
    Dataset updated
    Feb 1, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This map shows recent COVID-19 Trends with arrows that represent each county's recent trend history, and weekly new case counts for U.S. counties. The map data is updated weekly and featured in this storymap.It shows COVID-19 Trend for the most recent Monday with a colored arrow for each county. The larger the arrow, the longer the county has had this trend. An up arrow indicates the number of active cases continue upward. A down arrow indicates the number of active cases is going down. The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020. This map is updated every Tuesday based on data through the previous Sunday. See also this version of the map for additional perspective.COVID-19 Trends show how each county is doing and are updated daily. We base the trend assignment on the number of new cases in the past two weeks and the number of active cases per 100,000 people. To learn the details for how trends are assigned, see the full methodology. There are five trends:Emergent - New cases for the first time or in counties that have had zero new cases for 60 or more days.Spreading - Low to moderate rates of new cases each day. Likely controlled by local policies and individuals taking measures such as wearing masks and curtailing unnecessary activities.Epidemic - Accelerating and uncontrolled rates of new cases.Controlled - Very low rates of new cases.End Stage - One or fewer new cases every 5 days in larger populations and fewer in rural areas.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

  2. Share of districts in COVID-19 zones India 2020 by state

    • statista.com
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Share of districts in COVID-19 zones India 2020 by state [Dataset]. https://www.statista.com/statistics/1114402/india-districts-in-covid-19-zones-by-state/
    Explore at:
    Dataset updated
    Jul 12, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The Indian capital of Delhi had the highest share of districts, at about 27 percent, in the red zone as of April 19, 2020. Red zones marked districts having more than 100 confirmed cases of the coronavirus COVID-19.

    Infections in Indian states

    Maharashtra confirmed around 13 thousand cases of the coronavirus (COVID-19) as of May 4, 2020, with 548 fatalities and 2,115 recoveries. It was the leading state in terms of number of infections, followed by the states of Gujarat and Delhi. The first case, however, was reported in late January in the southern state of Kerala. Since then the spread of the virus has been consistent and the country is yet to see a drop in the number of infections.

    COVID-19 in India

    India reported around 42.7 thousand cases of the coronavirus (COVID-19) as of May 4, 2020. The country went into lockdown on March 25, the largest in the world, restricting 1.3 billion people and extended until May 3, 2020. The lockdown had been until May 17, 2020.

  3. Ontario COVID-19 zones

    • open.canada.ca
    • ouvert.canada.ca
    csv
    Updated May 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Ontario COVID-19 zones [Dataset]. https://open.canada.ca/data/en/dataset/cbb4d08c-4e56-4b07-9db6-48335241b88a
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Nov 7, 2020 - May 1, 2021
    Area covered
    Ontario
    Description

    On November 3, 2020, Ontario released a COVID-19 Response Framework which categorized public health unit regions into five zones: * Green-Prevent * Yellow-Protect * Orange-Restrict * Red-Control * Grey-Lockdown For each zone, there were different public health and workplace safety measures for businesses and organizations. Data includes: * Public Health Unit (PHU) * PHU’s website * COVID-19 zone We are no longer updating this data. It is best suited for historical research and analysis.

  4. Number of COVID-19 cases and deaths as of April 26, 2023, by region

    • statista.com
    • ai-chatbox.pro
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of COVID-19 cases and deaths as of April 26, 2023, by region [Dataset]. https://www.statista.com/statistics/1101373/novel-coronavirus-2019ncov-mortality-and-cases-worldwide-by-region/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 has spread to most regions and territories around the world. As of May 2, 2023, the number of confirmed cases had reached roughly 687 million.

    COVID-19 in the Americas The Americas is one of the regions most impacted by COVID-19. The number of coronavirus cases and deaths are particularly high in the United States and Brazil. The pandemic has had a devastating impact on Latin America, and several nations have recorded a resurgence in cases, highlighting the complexity of easing restrictions while the virus is still a threat. However, mass vaccination programs have been launched in countries including Argentina, Chile, and Panama.

    The role of face masks in the prevention of COVID-19 There has been much discussion about the effectiveness of face masks in slowing the spread of the COVID-19 disease. Many governments around the world made it mandatory to wear a form of face mask, particularly in shops and on public transport. Masks alone will not halt the spread of the disease, and they should be used alongside other measures such as social distancing.

  5. Mobility at transit stations amid coronavirus crisis in regions

    • statista.com
    • ai-chatbox.pro
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Mobility at transit stations amid coronavirus crisis in regions [Dataset]. https://www.statista.com/statistics/1112559/activity-transit-stations-amid-coronavirus-crisis-selected-location/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 29, 2020 - Mar 31, 2021
    Area covered
    Worldwide
    Description

    On March 31, 2021, activities at transit stations in Italy were down 40 percent compared with the 'usual activity' during the five weeks between January 3 and February 6, 2020. The reduction in mobility in most places likely comes as a result of measures taken to curtail the COVID-19 pandemic. Many countries were forced to place extensive restrictions on travel in order to contain the virus. More information regarding the pandemic may be found here.

  6. Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3725831
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  7. g

    Cases of the last 7 days by Basic Health Zone | gimi9.com

    • gimi9.com
    Updated Mar 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Cases of the last 7 days by Basic Health Zone | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_spasitnacovid_pol_ultimos7dias-xml_1/
    Explore at:
    Dataset updated
    Mar 27, 2022
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Information layers of the numbers of people affected (accumulated cases) by the coronavirus (COVID-19) by the Basic Health Area of Navarre. The data includes people affected, whether they have had PCR tests or not, and quick tests. Given the change in the case accounting protocol, the range of daily data is limited to the period from 25-03-2020 to 27-03-2022: 731 days. Started at the end of 2020, the vaccination campaign, the available information period covers the total cumulative case and rate data and PCR, by Basic Health Zone, provided by the Department of Health, Navarre Health Service/Osasunbidea on a daily basis in the period 25/03/2020 to 27/03/2022: 731 days. On the latter date, due to the change in the accounting method of the cases, the incorporation of new data is suspended.

  8. d

    DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Modified ZIP Code Tabulation Area [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-modified-zip-code-tabulation-area
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders) Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis wi

  9. HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2025). HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave 02 [Dataset]. https://catalog.data.gov/dataset/hhs-covid-19-small-area-estimations-survey-primary-vaccine-series-wave-02
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.

  10. Coronavirus: surface area of the containment housing by region in France...

    • statista.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Coronavirus: surface area of the containment housing by region in France March 2020 [Dataset]. https://www.statista.com/statistics/1110448/size-housing-containment-coronavirus-france/
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 25, 2020 - Mar 30, 2020
    Area covered
    France
    Description

    This graph illustrates the average surface area of the dwellings in which French people live during the containment of March 17 due to the coronavirus (COVID-19) in March 2020, by region and in square meters. At that time in the region of Bourgogne-Franche-Comté, French people were confined in dwellings with an average surface area of 108 square meters.

    For more information on the coronavirus pandemic (COVID-19), please see our page: Facts and figures about COVID-19 coronavirus

  11. e

    COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/datasets/UrbanObservatory::covid-19-trends-in-each-country
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  12. g

    HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave...

    • gimi9.com
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). HHS COVID-19 Small Area Estimations Survey - Primary Vaccine Series - Wave 10 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_hhs-covid-19-small-area-estimations-survey-primary-vaccine-series-wave-10/
    Explore at:
    Dataset updated
    Apr 1, 2025
    Description

    The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to understand how county-level COVID-19 vaccination hesitancy changed over time in the United States.

  13. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  14. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  15. Areas of concern for food and beverage manufacturers due to coronavirus U.S....

    • statista.com
    Updated Jan 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Areas of concern for food and beverage manufacturers due to coronavirus U.S. 2020 [Dataset]. https://www.statista.com/statistics/1113712/coronavirus-areas-of-concern-for-f-and-b-manufacturers-us/
    Explore at:
    Dataset updated
    Jan 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2019 - Mar 2020
    Area covered
    United States
    Description

    This statistic depicts areas of concern reported by a sample of industry professionals in the food and beverage industry in March and April 2020 due to the coronavirus pandemic. While around 22 percent of respondents expressed concern for IT cybersecurity with remote employees, the vast majority (80 percent) was more concerned about the state of the U.S. economy due to the pandemic.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  16. d

    ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography

    • catalog.data.gov
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-summarized-by-geography
    Explore at:
    Dataset updated
    Mar 29, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents. On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset. Dataset is cumulative and covers cases going back to 3/2/2020 when testing began. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000 Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website. Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongo

  17. Coronavirus: share of housing where French people are confined by surface...

    • statista.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Coronavirus: share of housing where French people are confined by surface area 2020 [Dataset]. https://www.statista.com/statistics/1110400/share-housing-by-surface-area-containment-coronavirus-france/
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 25, 2020 - Mar 30, 2020
    Area covered
    France
    Description

    This graph represents the distribution of the dwellings where French people live the lockdown of March 17 due to coronavirus (COVID-19) in March 2020, by surface area in square meters. At that time 34 percent of respondents were confined in dwellings with a surface area varying between 80 and 109 square meters.

    For more information on the coronavirus pandemic (COVID-19), please see our page: facts and figures about COVID-19 coronavirus.

  18. High tech commodities sourced from COVID-19 quarantined areas in China March...

    • statista.com
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). High tech commodities sourced from COVID-19 quarantined areas in China March 2020 [Dataset]. https://www.statista.com/statistics/1103095/high-tech-commodities-from-china-covid-19-quarantined-areas/
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2, 2020
    Area covered
    China
    Description

    The outbreak of COVID-19, also known as novel coronavirus, is impacting the supply chains of the high tech, semiconductor, and consumer electronics companies in the United States and Europe, as many commodities are sourced from the quarantined areas of China. The resistors category is affected heavily as 590 commodities of the category are sourced from the Covid-19 quarantine areas in China.

  19. a

    NY COVID-19 Zones

    • nyc-open-data-statelocalps.hub.arcgis.com
    • nyccovid-19response-nycgov.hub.arcgis.com
    • +2more
    Updated Oct 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pkunduNYC (2020). NY COVID-19 Zones [Dataset]. https://nyc-open-data-statelocalps.hub.arcgis.com/items/d569d1157f4c49e482cfcc5a00ff6dae
    Explore at:
    Dataset updated
    Oct 7, 2020
    Dataset authored and provided by
    pkunduNYC
    Area covered
    Description

    The following layer shows hotspot areas as delineated by NY State government. The layer shows red, orange, and yellow zones and provides activity guidance via attributes.

  20. hhs-covid-19-small-area-estimations-survey-updated

    • huggingface.co
    Updated Nov 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Human Services (2024). hhs-covid-19-small-area-estimations-survey-updated [Dataset]. https://huggingface.co/datasets/HHS-Official/hhs-covid-19-small-area-estimations-survey-updated
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    Department of Health and Human Services
    Description

    HHS COVID-19 Small Area Estimations Survey - Updated Bivalent Vaccine Audience - Wave 27

      Description
    

    The goal of the Monthly Outcome Survey (MOS) Small Area Estimations (SAE) is to generate estimates of the proportions of adults, by county and month, who were in the population of interest for the U.S. Department of Health and Human Services’ (HHS) We Can Do This COVID-19 Public Education Campaign. These data are designed to be used by practitioners and researchers to… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/hhs-covid-19-small-area-estimations-survey-updated.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
rdpgisadmin (2022). What are the COVID-19 trends in my area? [Dataset]. https://hub.scag.ca.gov/maps/85989e671a2345d19139a6ca254d7169

What are the COVID-19 trends in my area?

Explore at:
Dataset updated
Feb 1, 2022
Dataset authored and provided by
rdpgisadmin
Area covered
Description

This map shows recent COVID-19 Trends with arrows that represent each county's recent trend history, and weekly new case counts for U.S. counties. The map data is updated weekly and featured in this storymap.It shows COVID-19 Trend for the most recent Monday with a colored arrow for each county. The larger the arrow, the longer the county has had this trend. An up arrow indicates the number of active cases continue upward. A down arrow indicates the number of active cases is going down. The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020. This map is updated every Tuesday based on data through the previous Sunday. See also this version of the map for additional perspective.COVID-19 Trends show how each county is doing and are updated daily. We base the trend assignment on the number of new cases in the past two weeks and the number of active cases per 100,000 people. To learn the details for how trends are assigned, see the full methodology. There are five trends:Emergent - New cases for the first time or in counties that have had zero new cases for 60 or more days.Spreading - Low to moderate rates of new cases each day. Likely controlled by local policies and individuals taking measures such as wearing masks and curtailing unnecessary activities.Epidemic - Accelerating and uncontrolled rates of new cases.Controlled - Very low rates of new cases.End Stage - One or fewer new cases every 5 days in larger populations and fewer in rural areas.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

Search
Clear search
Close search
Google apps
Main menu