Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 2.30 percent in July from 2.70 percent in June of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAbout the dataset (cleaned data)
The dataset (parquet file) contains approximately 1,5 million residential household sales from Denmark during the periode from 1992 to 2024. All cleaned data is merged into one parquet file here on Kaggle. Note some cleaning might still be nessesary, see notebook under code.
Also, added a random sample (100k) of the dataset as a csv file.
Done in Python version: 2.6.3.
Raw data
Raw data and more info is avaible on Github repositary: https://github.com/MartinSamFred/Danish-residential-housingPrices-1992-2024.git
The dataset has been scraped and cleaned (to some extent). Cleaned files are located in: \Housing_data_cleaned \ named DKHousingprices_1 and 2. Saved in parquet format (and saved as two files due to size).
Cleaning from raw files to above cleaned files is outlined in BoligsalgConcatCleanigGit.ipynb. (done in Python version: 2.6.3)
Webscraping script: Webscrape_script.ipynb (done in Python version: 2.6.3)
Provided you want to clean raw files from scratch yourself:
Uncleaned scraped files (81 in total) are located in \Housing_data_raw \ Housing_data_batch1 and 2. Saved in .csv format and compressed as 7-zip files.
Additional files added/appended to the Cleaned files are located in \Addtional_data and named DK_inflation_rates, DK_interest_rates, DK_morgage_rates and DK_regions_zip_codes. Saved in .xlsx format.
Content
Each row in the dataset contains a residential household sale during the period 1992 - 2024.
“Cleaned files” columns:
0 'date': is the transaction date
1 'quarter': is the quarter based on a standard calendar year
2 'house_id': unique house id (could be dropped)
3 'house_type': can be 'Villa', 'Farm', 'Summerhouse', 'Apartment', 'Townhouse'
4 'sales_type': can be 'regular_sale', 'family_sale', 'other_sale', 'auction', '-' (“-“ could be dropped)
5 'year_build': range 1000 to 2024 (could be narrowed more)
6 'purchase_price': is purchase price in DKK
7 '%_change_between_offer_and_purchase': could differ negatively, be zero or positive
8 'no_rooms': number of rooms
9 'sqm': number of square meters
10 'sqm_price': 'purchase_price' divided by 'sqm_price'
11 'address': is the address
12 'zip_code': is the zip code
13 'city': is the city
14 'area': 'East & mid jutland', 'North jutland', 'Other islands', 'Capital, Copenhagen', 'South jutland', 'North Zealand', 'Fyn & islands', 'Bornholm'
15 'region': 'Jutland', 'Zealand', 'Fyn & islands', 'Bornholm'
16 'nom_interest_rate%': Danish nominal interest rate show pr. quarter however actual rate is not converted from annualized to quarterly
17 'dk_ann_infl_rate%': Danish annual inflation rate show pr. quarter however actual rate is not converted from annualized to quarterly
18 'yield_on_mortgage_credit_bonds%': 30 year mortgage bond rate (without spread)
Uses
Various (statistical) analysis, visualisation and I assume machine learning as well.
Practice exercises etc.
Uncleaned scraped files are great to practice cleaning, especially string cleaning. I’m not an expect as seen in the coding ;-).
Disclaimer
The data and information in the data set provided here are intended to be used primarily for educational purposes only. I do not own any data, and all rights are reserved to the respective owners as outlined in “Acknowledgements/sources”. The accuracy of the dataset is not guaranteed accordingly any analysis and/or conclusions is solely at the user's own responsibly and accountability.
Acknowledgements/sources
All data is publicly available on:
Boliga: https://www.boliga.dk/
Finans Danmark: https://finansdanmark.dk/
Danmarks Statistik: https://www.dst.dk/da
Statistikbanken: https://statistikbanken.dk/statbank5a/default.asp?w=2560
Macrotrends: https://www.macrotrends.net/
PostNord: https://www.postnord.dk/
World Data: https://www.worlddata.info/
Dataset picture / cover photo: Nick Karvounis (https://unsplash.com/)
Have fun… :-)
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The property listings dataset contains information about real estate properties available for sale or rent in Brazil. It includes details such as property type (apartment, house, commercial property), location (city, neighborhood), size (square footage, number of rooms), price, amenities, and contact information for the property owner or real estate agent. This dataset can be used for market analysis, property valuation, and identifying trends in the real estate market.
Sales and Rental Prices Dataset: The sales and rental prices dataset provides information about the prices of real estate properties in Brazil. It includes data on property transactions, including sale prices and rental prices per square meter or per month. This dataset can be used to analyze price trends, compare property prices across different regions, and identify areas with high or low real estate market demand.
Property Characteristics Dataset: The property characteristics dataset contains detailed information about the features and attributes of real estate properties. It includes data such as the number of bedrooms, bathrooms, parking spaces, floor plan, construction year, building amenities, and property condition. This dataset can be used for property classification, identifying popular property features, and evaluating property quality.
Geographical Data: Geographical data includes information about the location and spatial features of real estate properties in Brazil. It can include data such as latitude and longitude coordinates, zoning information, proximity to amenities (schools, hospitals, parks), and neighborhood demographics. This dataset can be used for spatial analysis, identifying hotspots or desirable locations, and understanding the neighborhood characteristics.
Property Market Trends Dataset: The property market trends dataset provides information about market conditions and trends in the real estate sector in Brazil. It includes data such as the number of property listings, average time on the market, price fluctuations, mortgage interest rates, and economic indicators that impact the real estate market. This dataset can be used for market forecasting, understanding market dynamics, and making informed investment decisions.
Real Estate Regulatory Data: Real estate regulatory data includes information about legal and regulatory aspects of the real estate sector in Brazil. It can include data on property ownership, property taxes, zoning regulations, building permits, and legal restrictions on property transactions. This dataset can be used for legal compliance, understanding property ownership rights, and assessing the legal framework for real estate transactions.
Historical Data: Historical real estate data includes past records and trends of property prices, market conditions, and sales volumes in Brazil. This dataset can span several years and can be used to analyze long-term market trends, compare current market conditions with historical data, and assess the performance of the real estate market over time.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Table B.3.1 presents quarterly mortgage rate data specific to the Irish market. These data include all euro and non-euro denominated mortgage lending in the Republic of Ireland only. New business refers to new mortgage lending drawdowns during the quarter, broken down by type of interest rate product (i.e. fixed, tracker and SVR). The data also provide further breakdown of mortgages for principal dwelling house (PDH) and buy-to-let (BTL) properties. Renegotiations of existing loans are not included. .hidden { display: none }
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research in modelling housing market dynamics using agent-based models (ABMs) has grown due to the rise of accessible individual-level data. This research involves forecasting house prices, analysing urban regeneration, and the impact of economic shocks. There is a trend towards using machine learning (ML) algorithms to enhance ABM decision-making frameworks. This study investigates exogenous shocks to the UK housing market and integrates reinforcement learning (RL) to adapt housing market dynamics in an ABM. Results show agents can learn real-time trends and make decisions to manage shocks, achieving goals like adjusting the median house price without pre-determined rules. This model is transferable to other housing markets with similar complexities. The RL agent adjusts mortgage interest rates based on market conditions. Importantly, our model shows how a central bank agent learned conservative behaviours in sensitive scenarios, aligning with a 2009 study, demonstrating emergent behavioural patterns.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price inflation, simple and mix-adjusted average house prices, by dwelling, type of buyer, number of transactions, mortgage advances, distribution of borrowers' ages/incomes, interest rates, land prices, average valuations, Land Registry data
Facebook
TwitterIn May 29, 2019, FHFA published its final Monthly Interest Rate Survey (MIRS), due to dwindling participation by financial institutions. MIRS had provided information on a monthly basis on interest rates, loan terms, and house prices by property type (all, new, previously occupied); by loan type (fixed- or adjustable-rate), and by lender type (savings associations, mortgage companies, commercial banks and savings banks); as well as information on 15-year and 30-year, fixed-rate loans. Additionally, MIRS provided quarterly information on conventional loans by major metropolitan area and by Federal Home Loan Bank district, and was used to compile FHFA’s monthly adjustable-rate mortgage index entitled the “National Average Contract Mortgage Rate for the Purchase of Previously Occupied Homes by Combined Lenders,” also known as the ARM Index.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price inflation, simple and mix-adjusted average house prices, by dwelling, type of buyer, number of transactions, mortgage advances, distribution of borrowers' ages/incomes, interest rates, land prices, average valuations, Land Registry data
Facebook
TwitterHouse price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold. Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007. From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank. From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and 2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here: http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years. House Construction Cost Index is based on the 1st day of the third month of each quarter. Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Facebook
Twitterhttp://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Annual house price inflation, simple and mix-adjusted average house prices, by dwelling, type of buyer, number of transactions, mortgage advances, distribution of borrowers' ages/incomes, interest rates, land prices, average valuations, Land Registry data
Facebook
TwitterThrough reading this publication you will: • gain an understanding of how house prices are set in economics terms, how they are measured, and why the cost of housing matters for London’s economy and its residents • see whether incomes and earnings in London have kept pace with the costs of home ownership in London, and see how affordability may be affected by future changes in interest rates • find out about the drivers of demand for residential property in London, and how the supply of homes has responded to changing conditions
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House price index is based on average new house price value at loan approval stage and therefore has not been adjusted for changes in the mix of houses and apartments sold.
Interest rates is based on building societies mortgage loans, published by Central Statistics Office up to 2007.
From 2008 interest rates is average rate of all 'mortgage lenders' reporting to the Central Bank.
From 2014 it is based on the floating rate for new customers as published by the Central Bank (Retail interest rates - Table B2.1). The reason for the drop between 2013 and
2014 is due to the difference in methodology - the 2014 data is the weighted average rate on new loan agreements. Further information can be found here:
http://www.centralbank.ie/polstats/stats/cmab/Documents/Retail_Interest_Rate_Statistics_Explanatory_Notes.pdf
Earnings is based on the average weekly earnings of adult workers in manufacturing industries, published by the Central Statistics Office. This series has been updated since 1996 using a new methodology and therefore it is not directly comparable with those for earlier years.
House Construction Cost Index is based on the 1st day of the third month of each quarter.
Consumer Price index is based on the Consumer Price Index, published by the Central Statistics Office.
The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.19 percent in October 23 from 6.27 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
TwitterAn index that can be used to gauge broad financial conditions and assess how these conditions are related to future economic growth. The index is broadly consistent with how the FRB/US model generally relates key financial variables to economic activity. The index aggregates changes in seven financial variables: the federal funds rate, the 10-year Treasury yield, the 30-year fixed mortgage rate, the triple-B corporate bond yield, the Dow Jones total stock market index, the Zillow house price index, and the nominal broad dollar index using weights implied by the FRB/US model and other models in use at the Federal Reserve Board. These models relate households' spending and businesses' investment decisions to changes in short- and long-term interest rates, house and equity prices, and the exchange value of the dollar, among other factors. These financial variables are weighted using impulse response coefficients (dynamic multipliers) that quantify the cumulative effects of unanticipated permanent changes in each financial variable on real gross domestic product (GDP) growth over the subsequent year. The resulting index is named Financial Conditions Impulse on Growth (FCI-G). One appealing feature of the FCI-G is that its movements can be used to measure whether financial conditions have tightened or loosened, to summarize how changes in financial conditions are associated with real GDP growth over the following year, or both.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This study analyses the effects of oil price and macroeconomic shocks on the Malaysian housing market using a SVAR framework. The specification of the baseline model is based on standard economic theory. The Gregory-Hansen (GH) cointegration tests reveal that there is no cointegration among the variables of interest. Results from performing Toda-Yamamoto (TY) non-Granger causality tests show that oil price, labor force and inflation are the leading factors causing movements in the Malaysian housing prices in the long run. The findings from estimating generalized impulse response functions (IRFs) and variance decompositions (VDCs) indicate that oil price and labor force shocks explain a substantial portion of housing market price fluctuations in Malaysia.
Facebook
TwitterA local Vermont/New Hampshire real estate firm is looking into modeling closed prices for houses. This dataset contains features of houses in three towns in Vermont, which make up a sizable chunk of the real estate firm's business.
MLS is the real estate information platform that is publicly available. Features were exported from an MLS web platform. Features include # of baths, # of bedrooms, and # of acres. There are also categorical features, such as town and address.
Hint: Natural language processing techniques that identify and leverage the road that a house is on may improve prediction accuracy.
Thank you to AH.
There is a Train, Validate, and, Test. Can you show a cross validated result that beats 10.0% error in closed price? You can use any measure to train your model - RMSE, RMSLE, etc.; however, the accuracy metric is simply mean percent error!
Please Note: These houses can be uniquely identified on the MLS website, which does also have photos of the houses. Computer Vision techniques that retrieve information from photos on the data are of interest to the company, but are not encouraged for this simple dataset, which serves as a jumping off point for future endeavors as it contains data that is already compiled and understood by the firm.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: Price in dollars Address of the property Latitude and Longitude of the address obtained by using Google Geocoding service Area Name of the property obtained by using Google Geocoding service This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas) However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes). This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/ I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Property Price Index in Australia rose by 4.7 percent qoq in Q4 2021, above market consensus of 3.9 percent and after a 5.0 percent growth in Q3. This was the sixth straight quarter of growth in property prices, supported by record-low interest rates and strong demand. The strongest quarterly price increases were recorded in Brisbane (9.6 percent), followed by Adelaide (6.8 percent), Hobart (6.5 percent), and Canberra (6.4 percent). Through the year to Q4, the index jumped to a record high of 23.7 percent, with Hobart, Canberra, Brisbane, Sydney, and Adelaide having the largest annual rise since the commencement of the series; while Melbourne had the largest annual rise since Q2 2010. This dataset includes a chart with historical data for Australia House Price Index QoQ.
Facebook
TwitterThe Chinese economy has undergone a long-term transition reform, but there is still a planned economy characteristic in the financial sector, which is financial repression. Due to the existence of financial repression, China’s actual interest rate level should be lower than the Consumer Price Index (CPI). However, based on official China’s interest rates and CPI, over half of the years China’s actual interest rate remained higher than CPI by our calculation from 1999 to 2022. This is inconsistent with the financial repression that exists in China, and the main reason is the calculation methods of China’s CPI. China’s CPI measurement system originated from the planned economy era, which did not fully consider the rise in housing purchase prices, so the current CPI measurement system can be more realistically presented by taking the rise in housing prices into consider. The core idea of this study is to mining relevant official statistical data and calculate the proportion of Chinese residents’ expenditure on purchasing houses to their total expenditure. By taking the proportion of house purchases as the weight of house price factor, and taking the proportion of other consumption as the weight of official CPI, the Generalized CPI (GCPI) is formulated. The GCPI is then compared with market interest rates to determine the actual interest rate situation in China over the past 20 years. This study has found that if GCPI is used as a measure, China’s real interest rates have been negative for most years since 1999. Chinese residents have suffered the negative effects of financial repression over the past 20 years, and their property income cannot keep up with the actual losses caused by inflation. Therefore, it is believed that China’s CPI calculation method should be adjusted to take into account the rise in housing prices, so China’s actual inflation level could be more accurately reflected. In view of the above, deepening interest rate marketization reform and expand channels for financial investment are the future development goals of China’s financial system.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total-Other-Income-Expense-Net Time Series for Japan Real Estate Investment Corp. Japan Real Estate Investment Corporation (the "Company") was established on May 11, 2001 pursuant to Japan's Act on Investment Trusts and Investment Corporations ("ITA"). The Company was listed on the real estate investment trust market of the Tokyo Stock Exchange ("TSE") on September 10, 2001 (Securities Code: 8952). Since its IPO, the size of the Company's assets (total acquisition price) has grown steadily, expanding from 92.8 billion yen to 1,167.7 billion yen as of March 31, 2025. Over the same period, the Company's portfolio has also increased from 20 properties to 77 properties. During the March 2025 period (October 1, 2024 to March 31, 2025), the Japanese economy continued to demonstrate a gradual recovery, despite some lingering stagnation in capital investment and personal consumption due to inflation and other factors. On the other hand, given the policy rate hikes by the Bank of Japan, the shift in global interest rates to a lowering phase, the impact of U.S. policy trends, such as trade policy and other factors, interest rate trends, overseas political and economic developments, and price trends, including resource prices, will continue to bear watching. In the office leasing market, demand continues to grow for leases driven by business expansion and relocations aimed at improving location. As a result, the vacancy rate in central Tokyo continues to decline gradually. In addition, rent levels are rising at an accelerating rate. In light of the prevailing conditions in the leasing market, the Company is striving to attract new tenants through strategic leasing activities and to further enhance the satisfaction level of existing tenants by adding value to its portfolio properties with the aim of maintaining and improving the occupancy rate and realizing sustainable income growth across the entire portfolio. In the real estate trading market, despite the Bank of Japan normalizing its monetary policy, the appetite for property acquisition among both domestic and foreign investors remains firm, backed ma
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 2.30 percent in July from 2.70 percent in June of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.