Facebook
TwitterThe borough with the highest property prices in London, Kensington and Chelsea, had an average price for a flat exceeding *** million British pounds. London is the most populous metropolitan area in the UK, and living in it comes with a price tag. Unsurprisingly, the most expensive boroughs in terms of real estate prices are located in the heart of the metropolis: Kensington and Chelsea, the City of Westminster, and the City of London. In Kensington and Chelsea, home to several museums such as the Natural History Museum, the Victoria and Albert Museum, and the Science Museum, as well as galleries and theaters, the average price of apartments was over a million British pounds. How have residential property prices developed in recent years? The average house price in England have risen notably over the past decade, despite a slight decline in 2023. While London continues to be the hottest market in the UK, price growth in the capital has moderated. Conversely, prices in the more affordable cities, such as Belfast and Liverpool, have started to rise at a faster pace. Are residential property prices in London expected to grow in the future? Despite property prices declining in 2024, the market is forecast to continue to grow in the next five years, according to a October 2024 forecast. Some of the reasons for this are the robust demand for housing, the chronic shortage of residential properties, and the anticipated decline in mortgage interest rates.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains detailed information about rental properties across various locations in the UK. The data was collected by scraping Rightmove, a popular real estate platform. Each entry in the dataset includes the property's address, subdistrict code, rental price, deposit amount, letting type, furnish type, council tax details, property type, number of bedrooms and bathrooms, size in square feet, average distance to the nearest train station, and the count of nearest stations.
Researchers and analysts interested in the UK rental market can utilize this dataset to explore rental trends, pricing variations based on location and property type, amenities preferences, and more. The dataset provides a valuable resource for machine learning models, statistical analysis, and market research in the real estate sector.
Metadata: Source: The data was collected by scraping the Rightmove real estate platform, a leading source for property listings in the UK. Date Range: The dataset covers rental property listings available during the scraping period. Geographical Coverage: Primarily focused on various locations across the UK, providing insights into regional rental markets. Data Fields: Address: The location of the rental property. Subdistrict Code: A code representing the subdistrict or area of the property. Rent: The monthly rental price in GBP (£) for the property. Deposit: The deposit amount required for renting the property. Let Type: Indicates whether the property is available for short-term or long-term rental. Furnish Type: Describes the furnishing status of the property (e.g., furnished, unfurnished, or flexible options). Council Tax: Information about the council tax associated with the property. Property Type: Specifies the type of property, such as apartment, flat, maisonette, etc. Bedrooms: The number of bedrooms in the property. Bathrooms: The number of bathrooms in the property. Size: The size of the property in square feet (sq ft). Average Distance to Nearest Station: The average distance (in miles) to the nearest train station from the property. Nearest Station Count: The count of nearest train stations within a certain distance from the property. Data Quality: The data may contain missing values or "Ask agent" placeholders, which require direct inquiry with agents or landlords for specific information. Potential Uses: The dataset can be used for market analysis, rental price prediction models, understanding property preferences, and exploring the impact of location and amenities on rental properties in the UK.
Facebook
TwitterLondon was the most expensive city to buy an apartment in the United Kingdom, with an average value of ****** euros per square meter in the first quarter of 2025. The price of an apartment in Leeds was significantly lower at approximately ***** euros per square meter.
Facebook
TwitterIn 2024, London had the highest housing construction costs for residential buildings in the United Kingdom. The expense of building an apartment high-rise in the UK's capital amounted to ***** British pounds per square meter of internal area, while the cost of townhouses were ***** British pounds per square meter. Manchester was the second city on the list with the highest residential construction costs.
Facebook
TwitterThe house price dataset generated with 100 samples of houses in London. Each row of the DataFrame represents a single house and its features. The features of the houses in the dataset include:
Address: The address of the house, including the street name and number, as a string Square Footage: The total square footage of the house, as an integer Bedrooms: The number of bedrooms in the house, as an integer Bathrooms: The number of bathrooms in the house, as an integer Has Garden: A binary feature indicating whether the house has a garden or not, represented as 0 or 1 Has Garage: A binary feature indicating whether the house has a garage or not, represented as 0 or 1 Has Pool: A binary feature indicating whether the house has a pool or not, represented as 0 or 1 Has Gym: A binary feature indicating whether the house has a gym or not, represented as 0 or 1 Has Elevator: A binary feature indicating whether the house has an elevator or not, represented as 0 or 1 Has Fireplace: A binary feature indicating whether the house has a fireplace or not, represented as 0 or 1 Is Waterfront: A binary feature indicating whether the house is waterfront or not, represented as 0 or 1 Has Central Air: A binary feature indicating whether the house has central air or not, represented as 0 or 1 Is Renovated: A binary feature indicating whether the house is renovated or not, represented as 0 or 1 Has View: A binary feature indicating whether the house has a view or not, represented as 0 or 1 Price: The estimated price of the house, calculated based on the square footage, number of bedrooms, and number of bathrooms.
All of the features in the dataset are randomly generated, and the price is calculated based on simple formula that is not necessarily representative of the real world.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset expands upon the original London Property Listings by including additional attributes to facilitate deeper analysis of rental properties in London. It is ideal for research and projects related to real estate trends, price categorization, and area-wise analysis in one of the world's busiest markets.
This dataset was prepared and uploaded by Mehmet Emre Sezer. It is intended for educational and non-commercial use.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
London Property Prices Dataset 200k+ records Overview This dataset offers a comprehensive snapshot of residential properties in London, capturing both historical and current market data. It includes property-specific information such as address, geographic coordinates, and various price estimates. Data spans from past transaction prices to present estimates for sale and rental values, making it ideal for real estate analysis, investment modeling, and trend forecasting.
Key Columns fullAddress: Complete address of the property. postcode: Postal code identifying specific areas in London. outcode: First part of the postcode, grouping properties into broader geographic zones. latitude & longitude: Geographic coordinates for mapping or location-based analysis. property details: Includes bathrooms, bedrooms, floorAreaSqM, livingRooms, tenure (e.g., leasehold or freehold), and propertyType (e.g., flat, maisonette). energy rating: Current energy rating, indicating the property’s energy efficiency. Pricing Information Rental Estimates: Ranges for estimated rental values (rentEstimate_lowerPrice, rentEstimate_currentPrice, rentEstimate_upperPrice). Sale Estimates: Current sale price estimates with confidence levels and historical changes. saleEstimate_currentPrice: Current estimated sale price. saleEstimate_confidenceLevel: Confidence in the sale price estimate (LOW, MEDIUM, HIGH). saleEstimate_valueChange: Numeric and percentage change in sale value over time. Transaction History: Date-stamped sale prices with historic price changes, providing insight into property appreciation or depreciation. Potential Applications This dataset enables a variety of analyses:
Market Trend Analysis: Track how property values and rents have evolved over time. Investment Insights: Identify high-growth areas and property types based on historical and estimated price changes. Geospatial Analysis: Use location data to visualize price distributions and trends across London. Usage Recommendations This dataset is well-suited for machine learning projects predicting property values, rent estimations, or analyzing urban property trends. With rich details spanning multiple facets of the real estate market, it’s an essential resource for data scientists, analysts, and investors exploring the London property market.
Facebook
TwitterRenting an apartment in Cambridge cost on average ***** British pounds per month in July 2025. This made it one of the most expensive cities for renters in the UK after London. In London region, the average rent amounted to ***** British pounds. According to the source, this figure shows the asking rent, adjusted for achieved rents. A comparison of the rent prices of different London boroughs shows that costs may vary by several hundred and even over a thousand British pounds. Looking at the regional prices, Northern Ireland, Wales, and the Northeast emerged as the regions with the most affordable rents.
Facebook
TwitterMy first attempt to created dataset using Octoparse (data scraping).
Dataset contains listing type (apartment, house, villa etc), price, link, location.
Facebook
TwitterThis page is no longer being updated. Please use the UK House Price Index instead. Mix-adjusted house prices, by new/pre-owned dwellings, type of buyer (first time buyer) and region, from February 2002 for London and UK, and average mix-adjusted prices by UK region, and long term Annual House Price Index data since 1969 for London. The ONS House Price Index is mix-adjusted to allow for differences between houses sold (for example type, number of rooms, location) in different months within a year. House prices are modelled using a combination of characteristics to produce a model containing around 100,000 cells (one such cell could be first-time buyer, old dwelling, one bedroom flat purchased in London). Each month estimated prices for all cells are produced by the model and then combined with their appropriate weight to produce mix-adjusted average prices. The index values are based on growth rates in the mix-adjusted average house prices and are annually chain linked. The weights used for mix-adjustment change at the start of each calendar year (i.e. in January). The mix-adjusted prices are therefore not comparable between calendar years, although they are comparable within each calendar year. If you wish to calculate change between years, you should use the mix-adjusted house price index, available in Table 33. The data published in these tables are based on a sub-sample of RMS data. These results will therefore differ from results produced using full sample data. For further information please contact the ONS using the contact details below. House prices, mortgage advances and incomes have been rounded to the nearest £1,000. Data taken from Table 2 and Table 9 of the monthly ONS release. Download from ONS website
Facebook
TwitterThis statistic illustrates the monthly average rental price for one bedroom apartment in a new development in 2013, by London boroughs. By far the most expensive boroughs in London with respect to monthly rental of new apartments were Camden, with ***** British pounds (GBP) monthly per one bedroom flat and Westminster, with ***** GBP. For comparison, London-wide average monthly rental price for one bedroom new apartment was ***** GBP in 2013.
Facebook
TwitterThis dataset contains various characteristics and price information about houses in London. Consisting of 1000 entries, it reflects many aspects of each house, from location to interior design. In addition to physical features such as the address, neighborhood, number of rooms, and square footage, it also includes more specific details like the age of the building, garage availability, and balcony presence. Furthermore, the price of each house provides valuable insights into its market value.
Columns;
Address: The address of the house.
Neighborhood: The neighborhood or district where the house is located.
Bedrooms: The number of bedrooms in the house.
Bathrooms: The number of bathrooms in the house.
Square Meters: The total size of the house in square meters.
Building Age: The age of the building, indicating how long ago it was constructed.
Garden: Indicates whether the house has a garden ("Yes" or "No").
Garage: Indicates whether the house has a garage ("Yes" or "No").
Floors: The total number of floors in the house.
Property Type: The type of property, such as "Apartment" or "House."
Heating Type: The type of heating system used in the house (e.g., "Central Heating," "Gas").
Balcony: Indicates whether the house has a balcony ("Yes" or "No").
Interior Style: The interior design style of the house (e.g., "Modern," "Contemporary").
View: The type of view from the house (e.g., "City View," "Sea View").
Materials: The materials used in the construction of the house (e.g., "Brick," "Wood").
Building Status: The current condition of the building (e.g., "New," "Renovated," "Old").
Price (£): The sale price of the house, in British pounds (£).
Facebook
TwitterCost comparison table showing 2023 and 2024 median costs by location
Facebook
TwitterUpdate 29-04-2020: The data is now split into two files based on the variable collection frequency (monthly and yearly). Additional variables added: area size in hectares, number of jobs in the area, number of people living in the area.
I have been inspired by Xavier and his work on Barcelona to explore the city of London! 🇬🇧 💂
The datasets is primarily centered around the housing market of London. However, it contains a lot of additional relevant data: - Monthly average house prices - Yearly number of houses - Yearly number of houses sold - Yearly percentage of households that recycle - Yearly life satisfaction - Yearly median salary of the residents of the area - Yearly mean salary of the residents of the area - Monthly number of crimes committed - Yearly number of jobs - Yearly number of people living in the area - Area size in hectares
The data is split by areas of London called boroughs (a flag exists to identify these), but some of the variables have other geographical UK regions for reference (like England, North East, etc.). There have been no changes made to the data except for melting it into a long format from the original tables.
The data has been extracted from London Datastore. It is released under UK Open Government License v2 and v3. The underlining datasets can be found here: https://data.london.gov.uk/dataset/uk-house-price-index https://data.london.gov.uk/dataset/number-and-density-of-dwellings-by-borough https://data.london.gov.uk/dataset/subjective-personal-well-being-borough https://data.london.gov.uk/dataset/household-waste-recycling-rates-borough https://data.london.gov.uk/dataset/earnings-place-residence-borough https://data.london.gov.uk/dataset/recorded_crime_summary https://data.london.gov.uk/dataset/jobs-and-job-density-borough https://data.london.gov.uk/dataset/ons-mid-year-population-estimates-custom-age-tables
Cover photo by Frans Ruiter from Unsplash
The dataset lends itself for extensive exploratory data analysis. It could also be a great supervised learning regression problem to predict house price changes of different boroughs over time.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for New London County, CT (ATNHPIUS09011A) from 1977 to 2024 about New London County, CT; Norwich; CT; HPI; housing; price index; indexes; price; and USA.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset provides a snapshot of properties listed for sale in London, sourced from the Rightmove website. It includes various property details such as the number of bedrooms, bathrooms, type of property, and price. The dataset is designed for educational purposes, offering insights into real estate trends and allowing data science enthusiasts to apply their skills in the context of property analysis.
This dataset is a valuable resource for students and researchers to practice various data science and analytics techniques. Potential applications include: - Exploratory Data Analysis (EDA): Understanding property distribution across London, price trends, and property types. - Price Prediction Models: Building machine learning models to estimate property prices based on available features. - Real Estate Trend Analysis: Analyzing trends in London’s real estate market, such as price fluctuations or differences in property features by neighborhood. - Text Analysis: Using the property descriptions for natural language processing (NLP) to extract keywords or sentiment related to property value or appeal.
This dataset was ethically mined from a publicly accessible website using the APIFY API. All data in this dataset reflects publicly available information about properties listed for sale, with no Personally Identifiable Information (PII) included. The dataset does not include any data that could infringe on individual privacy.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Summary of UK House Price Index (HPI) price statistics covering England, Scotland, Wales and Northern Ireland. Full UK HPI data are available on GOV.UK.
Facebook
TwitterThe London house prices dataset contains details for property sales and contains around 1.38 million observations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada Construction Price Index: Residential: Apartment: London data was reported at 107.800 2023=100 in Mar 2025. This records an increase from the previous number of 105.200 2023=100 for Dec 2024. Canada Construction Price Index: Residential: Apartment: London data is updated quarterly, averaging 101.800 2023=100 from Mar 2023 (Median) to Mar 2025, with 9 observations. The data reached an all-time high of 107.800 2023=100 in Mar 2025 and a record low of 98.700 2023=100 in Mar 2023. Canada Construction Price Index: Residential: Apartment: London data remains active status in CEIC and is reported by Statistics Canada. The data is categorized under Global Database’s Canada – Table CA.EA011: Construction Price Index: 2023=100.
Facebook
TwitterThis repository is the fourth updated version of the attribute-linked residential property price dataset in the UK Data Service ReShare (854240) (https://reshare.ukdataservice.ac.uk/854240/). This dataset contains individual property transactions and associated variables from both Land Registry Price Paid Dataset (LR PPD) and the Department for Levelling Up, Housing and Communities (DLUHC, formerly MHCLG) Domestic Energy Performance Certificate (EPC) data. It is a linked dataset produced by address matching between LR PPD data (1/1/1995–31/10/2024) and Domestic EPC data (up to 31/10/2024). It is the full version of the 2024 update of the dataset published in the Greater London Authority (GLA) London Datastore (https://data.london.gov.uk/dataset/house-price-per-square-metre-in-england-and-wales).
The linked dataset (tranall_link_26122024) provided here is the initial, uncleaned version, intended to offer maximum flexibility for users to clean the data according to their research purposes. This linked dataset records over 22 million transactions with 106 variables across England and Wales, covering the period from 01/01/1995 to 31/10/2024. We have provided technical validation and data cleaning code in UKDA ReShare 854240 to help users evaluate the data structure and perform their own cleaning. There is no single way to clean this raw linked dataset, so we encourage users to develop their own cleaning process based on their research needs. This repository also includes the original Land Registry Price Paid Data (LR PPD) and Domestic EPCs used to create the linked dataset (house price per square metre dataset). Unlike previous versions, this updated dataset no longer includes the id variable (created by the authors). Instead, for the first time, both the Domestic EPCs and the linked dataset retain the LMK_KEY variable, which originates from the Domestic EPCs dataset. This change was made because LMK_KEY serves as a unique identifier, with no duplicate records since 2024. Five address-related variables from the original Domestic EPCs dataset(ADDRESS1, ADDRESS2, ADDRESS3, POSTCODE, and ADDRESS) have been removed from the EPC data in this repository. The priceper and classt variables were created by the authors and can be found in the linked dataset (tranall_link_26122024.zip). A detailed explanation of these fields is available on the GLA London Datastore (https://data.london.gov.uk/dataset/house-price-per-square-metre-in-england-and-wales). The lad23cd field originates from the NSPL dataset. Since November 2021, DLUHC has published Domestic EPCs with the Unique Property Reference Number (UPRN). As a result, both the EPC and the full linked dataset in this repository include UPRN information from the Domestic EPCs
Facebook
TwitterThe borough with the highest property prices in London, Kensington and Chelsea, had an average price for a flat exceeding *** million British pounds. London is the most populous metropolitan area in the UK, and living in it comes with a price tag. Unsurprisingly, the most expensive boroughs in terms of real estate prices are located in the heart of the metropolis: Kensington and Chelsea, the City of Westminster, and the City of London. In Kensington and Chelsea, home to several museums such as the Natural History Museum, the Victoria and Albert Museum, and the Science Museum, as well as galleries and theaters, the average price of apartments was over a million British pounds. How have residential property prices developed in recent years? The average house price in England have risen notably over the past decade, despite a slight decline in 2023. While London continues to be the hottest market in the UK, price growth in the capital has moderated. Conversely, prices in the more affordable cities, such as Belfast and Liverpool, have started to rise at a faster pace. Are residential property prices in London expected to grow in the future? Despite property prices declining in 2024, the market is forecast to continue to grow in the next five years, according to a October 2024 forecast. Some of the reasons for this are the robust demand for housing, the chronic shortage of residential properties, and the anticipated decline in mortgage interest rates.