39 datasets found
  1. G

    GIS Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Software Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-software-565918
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Geographic Information System (GIS) Software market is experiencing robust growth, driven by increasing adoption across various sectors, including government, utilities, and transportation. The market size in 2025 is estimated at $15 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key factors. The rising need for precise location-based data analysis, coupled with advancements in cloud computing and big data technologies, is enabling the development of sophisticated and scalable GIS solutions. Furthermore, the integration of GIS with other technologies, such as artificial intelligence (AI) and the Internet of Things (IoT), is opening new avenues for innovation and application. This leads to enhanced spatial data management, improved decision-making capabilities, and optimized resource allocation across diverse industries. Government initiatives promoting digital transformation and smart city development also contribute significantly to market growth. However, the market faces certain challenges. High initial investment costs for software and infrastructure, along with the need for skilled professionals to operate and maintain these systems, can hinder wider adoption, particularly among smaller organizations. Data security and privacy concerns associated with handling sensitive geospatial data also pose a significant restraint. Despite these limitations, the overall market outlook for GIS software remains highly positive, driven by the increasing reliance on location intelligence across a broad spectrum of industries and the continuous evolution of GIS technologies. The increasing availability of open-source GIS software is also expected to foster market growth, particularly in developing economies. By 2033, the market is projected to reach approximately $45 billion, signifying a substantial increase in market value and adoption.

  2. a

    Power Cost Equalization (PCE) Program

    • gis.data.alaska.gov
    • alaska-economic-data-dcced.hub.arcgis.com
    • +9more
    Updated Sep 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Commerce, Community, & Economic Development (2019). Power Cost Equalization (PCE) Program [Dataset]. https://gis.data.alaska.gov/maps/DCCED::power-cost-equalization-pce-program
    Explore at:
    Dataset updated
    Sep 3, 2019
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    Area covered
    Description

    Alaska Energy Authority Power Cost Equalization (PCE) program by community. The power cost equalization program supports rural Alaskans who live in areas where energy costs are significantly higher than urban areas in meeting the cost of electricity."AEA determines eligibility of community facilities and residential customers and authorizes payment to the electric utility. Commercial customers are not eligible to receive PCE credit. Participating utilities are required to reduce each eligible customer’s bill by the amount that the State pays for PCE. RCA determines if a utility is eligible to participate in the program and calculates the amount of PCE per kWh payable to the utility. More information about the RCA may be found at www.state.ak.us/rca."(AEA, 2017)Source: Alaska Energy AuthorityThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data - it has been primarily compiled from AEA PCE Fiscal Year Utility Report PDFs. For more information and for questions about this data, see: AEA Power Cost Equalization

  3. Where does healthcare cost the most? (Learn ArcGIS)

    • coronavirus-resources.esri.com
    • data.amerigeoss.org
    • +1more
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Where does healthcare cost the most? (Learn ArcGIS) [Dataset]. https://coronavirus-resources.esri.com/documents/1d715edd3443443fbda5a6010b87b07e
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Where does healthcare cost the most? (Learn ArcGIS online lesson).In this lesson you will learn how to:Group and display data by different classification methods.Uses statistical analysis to find areas of significantly high and low cost._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  4. B

    BIM Software Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). BIM Software Market Report [Dataset]. https://www.marketreportanalytics.com/reports/bim-software-market-87985
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Building Information Modeling (BIM) software market, valued at $8.72 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.90% from 2025 to 2033. This expansion is fueled by several key factors. Increasing adoption of digital technologies within the architecture, engineering, and construction (AEC) industries is a primary driver. BIM software offers significant advantages in improving project planning, collaboration, and cost management, leading to increased efficiency and reduced errors. The rising complexity of construction projects globally, coupled with stringent regulatory requirements for building safety and sustainability, further necessitates the use of advanced BIM solutions. Growth is also being driven by the increasing availability of cloud-based BIM platforms, which enhance accessibility and collaboration among stakeholders. The market is segmented by solution type (software and services), application (commercial, residential, industrial, and others), and end-user (contractors, architects, facilities managers, and others). North America currently holds a significant market share, driven by early adoption and robust technological infrastructure; however, Asia Pacific is projected to witness substantial growth due to rapid urbanization and infrastructure development. The competitive landscape is marked by both established players like Autodesk, Bentley Systems, and Nemetschek, and emerging innovative companies. These companies are continuously investing in research and development to enhance functionalities, integrate new technologies like artificial intelligence and machine learning, and develop user-friendly interfaces to cater to a wider user base. While the market faces some restraints such as the high initial investment costs of BIM software and the need for skilled professionals, the long-term benefits and increasing awareness of its advantages are expected to outweigh these challenges. The market's future trajectory is positive, with continued growth driven by technological advancements, industry adoption, and the overarching need for efficient and sustainable construction practices. The projected market size in 2033 will significantly surpass the 2025 value, reflecting the considerable growth potential of the BIM software market. Recent developments include: July 2024 - Esri and Autodesk have deepened their partnership to enhance data interoperability between Geographic Information Systems (GIS) and Building Information Modeling (BIM), with ArcGIS Pro now offering direct-read support for BIM and CAD elements from Autodesk's tools. This collaboration aims to integrate GIS and BIM workflows more seamlessly, potentially transforming how architects, engineers, and construction professionals work with geospatial and design data in the AEC industry., June 2024 - Hexagon, the Swedish technology giant, has acquired Voyansi, a Cordoba-based company specializing in Building Information Modelling (BIM), to enhance its portfolio of BIM solutions. This acquisition not only strengthens Hexagon's position in the global BIM market but also recognizes the talent in Argentina's tech sector, particularly in Córdoba, where Voyansi has been developing design, architecture, and engineering services for global construction markets for the past 15 years., April 2024 - Hyundai Engineering has partnered with Trimble Solution Korea to co-develop a Building Information Modeling (BIM) process management program, aiming to enhance construction site productivity through advanced 3D modeling technology. This collaboration highlights the growing importance of BIM in the construction industry, with the potential to optimize steel structure and precast concrete construction management, shorten project timelines, and reduce costs compared to traditional construction methods.. Key drivers for this market are: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Potential restraints include: Governmental Mandates and International Standards Encouraging BIM Adoption, Boosting Project Performance and Productivity. Notable trends are: Government Mandates Fueling BIM Growth.

  5. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  6. G

    Geographical Mapping Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographical Mapping Software Report [Dataset]. https://www.datainsightsmarket.com/reports/geographical-mapping-software-533384
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 26, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The geographical mapping software market is experiencing robust growth, driven by increasing demand across diverse sectors. The market's expansion is fueled by several key factors, including the rising adoption of cloud-based solutions for enhanced accessibility and collaboration, the growing need for precise location data in various applications, and the increasing integration of GIS technology with other analytical tools. Applications such as geological exploration, water conservancy projects, and urban planning are major contributors to market growth, benefiting from the ability to visualize and analyze spatial data efficiently. While the market faces certain restraints, such as the high initial investment costs associated with some software solutions and the need for specialized expertise, these are being mitigated by the emergence of more affordable and user-friendly options, as well as increased training and educational resources. The market is segmented by application (Geological Exploration, Water Conservancy Project, Urban Plan, Others) and type (Cloud Based, Web Based), with cloud-based solutions gaining significant traction due to their scalability and cost-effectiveness. Major players in the market, including Esri, Autodesk, Mapbox, and others, are continuously innovating and introducing new features to cater to the evolving needs of their customers. This competitive landscape ensures continuous improvement in software capabilities and affordability, further propelling market expansion. The geographical distribution of this market is broad, with North America and Europe currently holding significant market shares due to established infrastructure and high adoption rates. However, the Asia-Pacific region is exhibiting particularly rapid growth, driven by increasing urbanization, infrastructure development, and government initiatives promoting the use of GIS technologies. This regional shift indicates significant future growth potential in emerging markets. The forecast period of 2025-2033 suggests continued expansion, with a projected CAGR reflecting the sustained demand across different geographical regions and application areas. While precise figures are unavailable, based on industry trends and available data, a conservative estimate for the current market size would place it in the high hundreds of millions of dollars, with steady and significant growth anticipated.

  7. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions and the proliferation of readily available geospatial data are lowering the barrier to entry for both individual and corporate users. Furthermore, advancements in mapping technologies, such as 3D mapping capabilities and improved user interfaces, are enhancing the overall user experience and driving wider adoption. The increasing need for effective data visualization in fields like real estate, urban planning, environmental monitoring, and marketing is further bolstering market growth. Segmentation reveals a significant portion of the market is attributed to paid use licenses, reflecting the advanced features and support provided by premium tools. However, the free-use segment is also growing rapidly, driven by the availability of user-friendly open-source tools and freemium models offered by major players. Corporate users constitute a larger portion of the market compared to individual users, primarily due to their higher budget allocations for data visualization and analysis tools. Geographic distribution reveals a concentration of market share in North America and Europe, largely due to higher technological adoption and a well-established digital infrastructure. However, rapid growth is anticipated in Asia Pacific regions like China and India, driven by increasing urbanization and government initiatives promoting digital transformation. Market restraints include the high cost of advanced mapping software, the need for specialized technical skills for complex projects, and the potential for data security and privacy concerns. Nevertheless, ongoing technological innovation, coupled with the increasing accessibility of data and analytical tools, is anticipated to mitigate these challenges and continue to drive significant market expansion throughout the forecast period. Key players like Mapbox, ArcGIS StoryMaps, and Google are actively shaping the market landscape through continuous product development and strategic partnerships, fostering innovation and competitive pricing strategies.

  8. G

    GIS Solution Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Apr 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Solution Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-solution-558025
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Geographic Information System (GIS) Solutions market is experiencing robust growth, driven by increasing adoption across diverse sectors like transportation, architecture, engineering, and construction (AEC), telecommunications, and agriculture. The market's expansion is fueled by the need for efficient spatial data management, improved decision-making capabilities, and the rising demand for location-based services. Technological advancements, such as the integration of cloud computing, AI, and IoT, are further accelerating market growth. While precise figures for market size and CAGR were not provided, based on industry reports and the listed companies’ activities, a reasonable estimate would place the 2025 market size at approximately $15 billion, with a projected Compound Annual Growth Rate (CAGR) of 8-10% over the forecast period (2025-2033). This growth reflects the continuous integration of GIS into various applications, including smart city initiatives, precision farming, and disaster management. Despite the optimistic outlook, challenges remain. High initial investment costs for software and hardware, along with the need for skilled professionals to manage and analyze complex spatial data, can act as restraints. Data security and privacy concerns, coupled with the complexity of integrating GIS solutions with existing infrastructure, also pose hurdles for market expansion. However, the continuous development of user-friendly software, affordable cloud-based solutions, and the rising availability of skilled professionals are mitigating these challenges and supporting sustained growth in the market. The segmentation of the market into software, services, and applications across different sectors highlights the multifaceted nature of the GIS solution landscape, indicating diverse growth opportunities across a broad spectrum of industries.

  9. c

    SCP Sites Open Cost Recovery

    • gis.data.ca.gov
    • hub.arcgis.com
    • +1more
    Updated Aug 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). SCP Sites Open Cost Recovery [Dataset]. https://gis.data.ca.gov/datasets/waterboards::scp-sites-open-cost-recovery
    Explore at:
    Dataset updated
    Aug 9, 2021
    Dataset authored and provided by
    California Water Boards
    Area covered
    Description

    Sites in the State Water Resources Control Board GeoTracker system under the Site Cleanup Program that are open with categories of in and out of cost recovery. Layer contains sites managed under the Site Cleanup Program and is intended for use and viewing in the Site Cleanup Program GIS Story. The DWQ at the State Water Board developed this GIS Story of the Site Cleanup Program to inform the public of its mission and duties. The story intends to depict the importance of the program, describe the program's main roles and responsibilities, and provide input on the current and potential future challenges of the Site Cleanup Program. For more information on the Water Board's Site Cleanup Program visit Site Cleanup Program (SCP) | California State Water Resources Control Board.

  10. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  11. a

    Power Cost Equalization (PCE) Program Eligible Entities

    • hub.arcgis.com
    • gis.data.alaska.gov
    • +5more
    Updated Sep 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Commerce, Community, & Economic Development (2019). Power Cost Equalization (PCE) Program Eligible Entities [Dataset]. https://hub.arcgis.com/datasets/5d01c383bc40413fbb9a6319b486f497
    Explore at:
    Dataset updated
    Sep 3, 2019
    Dataset authored and provided by
    Dept. of Commerce, Community, & Economic Development
    Area covered
    Description

    Communities served by entities that are eligible for the Alaska Energy Authority's (AEA) Power Cost Equalization (PCE) program. The power cost equalization program supports rural Alaskans who live in areas where energy costs are significantly higher than urban areas in meeting the cost of electricity. Eligibility is determined by the Regulatory Commission of Alaska under Alaska Statutes 42.45.100-170."AEA determines eligibility of community facilities and residential customers and authorizes payment to the electric utility. Commercial customers are not eligible to receive PCE credit. Participating utilities are required to reduce each eligible customer’s bill by the amount that the State pays for PCE. RCA determines if a utility is eligible to participate in the program and calculates the amount of PCE per kWh payable to the utility. More information about the RCA may be found at www.state.ak.us/rca."(AEA, 2017)Source: Alaska Energy AuthorityThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: AEA Power Cost Equalization

  12. D

    Esri ArcGIS Mission For Defense Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Esri ArcGIS Mission For Defense Market Research Report 2033 [Dataset]. https://dataintelo.com/report/esri-arcgis-mission-for-defense-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Esri ArcGIS Mission for Defense Market Outlook



    According to our latest research, the global Esri ArcGIS Mission for Defense market size in 2024 stands at USD 2.85 billion, with a robust compound annual growth rate (CAGR) of 13.2% projected through the forecast period. By 2033, the market is expected to reach USD 8.14 billion, driven by escalating geopolitical tensions, the increasing adoption of real-time geospatial intelligence, and the need for advanced situational awareness in defense operations. The market’s upward trajectory is underpinned by the rapid digital transformation within the defense sector, where mission-critical decisions increasingly rely on accurate, real-time geospatial data and collaborative tools.




    The primary growth driver for the Esri ArcGIS Mission for Defense market is the surging demand for integrated situational awareness solutions. Defense organizations worldwide are investing heavily in technologies that enable real-time data collection, analysis, and dissemination across multiple domains. The ability to visualize, analyze, and share geospatial data in mission-critical environments is transforming how military operations are planned and executed. As asymmetric warfare and hybrid threats become more prevalent, defense agencies are compelled to leverage advanced GIS platforms like Esri ArcGIS Mission to enhance operational effectiveness, reduce response times, and improve mission outcomes. This trend is further amplified by the integration of AI and machine learning, which enables predictive analytics and automated threat detection within the ArcGIS ecosystem.




    Another significant factor fueling market growth is the increasing emphasis on interoperability and collaboration across defense forces. Modern military operations often require seamless coordination among diverse units and allied forces, making unified geospatial platforms indispensable. Esri ArcGIS Mission facilitates real-time collaboration, enabling distributed teams to access, update, and act upon shared geospatial intelligence. This capability not only supports joint operations but also enhances the agility and adaptability of defense organizations in rapidly evolving scenarios. As defense budgets prioritize digital modernization, investments in robust geospatial solutions are expected to accelerate, further propelling the market forward.




    The growing prevalence of cloud-based deployments is also a critical catalyst for market expansion. Cloud platforms offer unparalleled scalability, flexibility, and cost-efficiency, making them ideal for defense agencies seeking to modernize their IT infrastructure without incurring prohibitive capital expenditures. Esri’s cloud-enabled ArcGIS Mission allows for secure, centralized data management and on-demand access to geospatial intelligence, even in remote or contested environments. As more defense organizations transition to cloud-first strategies, the demand for cloud-native GIS solutions is poised to surge, unlocking new growth opportunities for the market.




    From a regional perspective, North America dominates the Esri ArcGIS Mission for Defense market, accounting for over 38% of global revenue in 2024. The region’s leadership is attributed to substantial defense budgets, early technology adoption, and the presence of key market players such as Esri Inc. Europe and Asia Pacific are also witnessing rapid growth, fueled by rising security concerns, increased defense spending, and government initiatives to modernize military capabilities. The Middle East & Africa and Latin America, while smaller in market share, are expected to demonstrate above-average growth rates, driven by ongoing security challenges and the need for advanced situational awareness tools.



    Component Analysis



    The Component segment of the Esri ArcGIS Mission for Defense market is bifurcated into Software and Services. Software represents the core of the market, encompassing a suite of GIS applications, mission management tools, and real-time analytics platforms. The demand for advanced software solutions is propelled by the need for intuitive user interfaces, robust data visualization, and seamless integration with existing defense IT infrastructure. Esri’s software offerings are renowned for their scalability and ability to support complex mission planning, situational awareness, and geospatial intelligence tasks. As defense a

  13. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53819
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, a reasonable estimate based on industry reports and the stated study period (2019-2033) suggests a current market valuation (2025) in the range of $3-5 billion USD. This significant market size is fueled by several key factors. The agricultural sector relies heavily on remote sensing for precision farming, crop monitoring, and yield prediction, significantly contributing to market expansion. Similarly, the water conservancy and forest management sectors utilize satellite imagery and software for resource monitoring, disaster management, and sustainable practices. Government agencies and the public sector increasingly adopt these technologies for urban planning, environmental monitoring, and national security applications. The market's growth is further enhanced by advancements in open-source software, offering cost-effective alternatives and promoting wider adoption. Trends such as cloud-based solutions, improved data processing capabilities, and the integration of artificial intelligence are further accelerating market growth. However, the market faces certain constraints. High initial investment costs for software licenses and specialized hardware can act as a barrier for entry, particularly for smaller businesses and organizations in developing regions. Data security concerns and the need for skilled professionals to interpret the complex data generated also pose challenges. Despite these obstacles, the ongoing development of user-friendly interfaces, coupled with decreasing hardware costs and increasing availability of cloud-based services, is predicted to mitigate these restraints and sustain a healthy compound annual growth rate (CAGR) in the range of 8-12% throughout the forecast period (2025-2033). Segmentation by application (Agriculture, Water Conservancy, Forest Management, Public Sector, Others) and software type (Open Source, Non-Open Source) reveals distinct market dynamics, with the non-open source segment currently holding a larger share due to its advanced capabilities. This trend is expected to continue, though the open-source segment will show considerable growth driven by its affordability and accessibility.

  14. H

    Replication Data for: Development of Cost-Effective Sensing Systems and...

    • dataverse.harvard.edu
    Updated May 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chun-Hsing Ho (2021). Replication Data for: Development of Cost-Effective Sensing Systems and Analytics (CeSSA) to Monitor Roadway Conditions and Mobility Safety [Dataset]. http://doi.org/10.7910/DVN/MGGWCN
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 12, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Chun-Hsing Ho
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Products of Research: All field data collected for this research was vibration responses from five sensors mounted on a vehicle that travelled on the I-10 corridors in Phoenix. All vibration data was used to analyze and predict pavement conditions using Matlab, R, Excel, and ArcGIS. Data Format and Content: The format of all vibration data is in a csv file that was further converted to a .xls format. For computing purposes, all vibration data were analyzed against their accuracy for prediction of pavement conditions using Matlab (in a m. format) and python (in a .ipynb format). For statistical analysis purposes, all vibration were analyzed using R software and the output files are in .rmd format. When pavement conditions were identified, maps were created using ArcGIS software and its format is in a .mxd format.

  15. G

    Geographic Information Systems Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Geographic Information Systems Report [Dataset]. https://www.datainsightsmarket.com/reports/geographic-information-systems-540828
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Systems (GIS) market is experiencing robust growth, projected to reach $2979.7 million in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033. This expansion is driven by several factors. Increasing urbanization necessitates efficient city planning and management, fueling demand for advanced GIS solutions. Furthermore, the rise of smart cities initiatives, coupled with the growing adoption of cloud-based GIS platforms, provides scalability and cost-effectiveness, accelerating market penetration. Precision agriculture, requiring detailed land analysis for optimized resource allocation, represents another significant driver. The integration of GIS with other technologies, such as IoT and AI, enhances data analysis capabilities, further boosting market value. Competition among key players like Pasco, Ubisense Group, and Hexagon is fostering innovation and creating diverse product offerings tailored to specific industry needs. While data security and integration challenges pose potential restraints, the overall market outlook remains positive, driven by continuous technological advancements and expanding applications across various sectors. The market's segmentation, while not explicitly detailed, likely includes various software and hardware components, professional services, and implementation support. The regional distribution is expected to see significant growth in developing economies, particularly in Asia-Pacific, driven by rapid urbanization and infrastructure development projects. North America and Europe will likely continue to dominate the market due to established technological infrastructure and higher adoption rates. However, the widening digital divide and increased investment in emerging economies are likely to shift regional market shares over the forecast period. The historical period (2019-2024) likely witnessed a slightly lower CAGR than the projected 5.5%, given the initial stages of widespread cloud adoption and the maturing of several key technologies. The next decade will see increased consolidation within the market, with larger players acquiring smaller companies to expand their product portfolios and geographical reach.

  16. GeoStrat Jurassic Report (ArcGIS Version) - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Oct 9, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). GeoStrat Jurassic Report (ArcGIS Version) - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/geostrat-jurassic-report-arcgis-version
    Explore at:
    Dataset updated
    Oct 9, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben This non-exclusive report was purchased by the OGA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the OGA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities. The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report. The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms). In addition, the OGA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the OGA well names from the OGA Offshore Wells shapefile (as provided on the OGA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the OGA. OGA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the OGA. A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the OGA’s Open Data website for use in other GIS software packages. All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the OGA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

  17. F

    Field Data Collection Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Field Data Collection Software Report [Dataset]. https://www.marketreportanalytics.com/reports/field-data-collection-software-76580
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Field Data Collection Software market is experiencing robust growth, driven by the increasing need for efficient and accurate data capture across diverse industries. The market's expansion is fueled by several key factors. Firstly, the rising adoption of mobile technologies and cloud computing provides seamless data collection and real-time analysis capabilities, enhancing operational efficiency and decision-making. Secondly, the growing demand for data-driven insights across sectors like construction, oil and gas, and environmental monitoring is pushing organizations to adopt sophisticated field data collection solutions. This trend is further amplified by the increasing focus on safety and compliance regulations, demanding meticulous data recording and analysis for risk mitigation. Furthermore, the integration of advanced features like GPS tracking, image capture, and automated data processing streamlines workflows and minimizes manual errors, thereby improving overall productivity and cost-effectiveness. While initial investment costs can pose a challenge for some businesses, the long-term return on investment in terms of improved efficiency, reduced operational costs, and data-driven decision making is increasingly outweighing the initial expenses. The market's segmented nature, with applications spanning environmental monitoring, construction, oil & gas, and transportation, among others, and various deployment models (cloud-based and on-premises), indicates a wide spectrum of user needs and preferences, opening opportunities for tailored software solutions. The competitive landscape is characterized by a mix of established players and emerging startups offering a range of solutions. While established companies like SafetyCulture and ArcGIS bring experience and extensive feature sets, newer companies are entering with innovative technologies and niche solutions. The market is expected to continue its growth trajectory, driven by technological advancements, increasing data demands across industries, and a growing awareness of the benefits of efficient field data management. The North American and European markets currently hold a significant share, but emerging economies in Asia-Pacific and the Middle East & Africa are expected to witness rapid growth in adoption over the forecast period, largely due to increasing infrastructure development and rising digitization efforts in these regions. The shift towards cloud-based solutions is also a major trend, due to scalability and accessibility advantages over on-premises deployments. This trend is likely to intensify further in the coming years, driven by affordability and convenience.

  18. Esri Disaster Response Program - request assistance

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +1more
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Esri Disaster Response Program - request assistance [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/datasets/esri-disaster-response-program-request-assistance
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Esri Disaster Response Program (DRP) assistance request form. Use this website to request assistance.To help jump-start your response to COVID-19, Esri is providing the ArcGIS Hub Coronavirus Response template at no cost through a six-month donation of ArcGIS Online with ArcGIS Hub Basic. The template includes examples, materials, and configurations to rapidly deploy an ArcGIS Hub environment. ArcGIS Hub is a framework to build your own website to visualize and analyze the COVID-19 crisis in the context of your organization's or community's population and assets._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  19. d

    Sheet1$

    • catalog.data.gov
    • data.seattle.gov
    • +1more
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Sheet1$ [Dataset]. https://catalog.data.gov/dataset/ifaoutreach
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Description

    This data layer includes key performance metrics collected by the City and partners tracking the progress towards the goals of the Internet for All Seattle Initiative. Internet for All Seattle Dashboards. The data points reflect activities in five categories: 1) Affordable Connectivity Program, 2) Internet Connectivity, 3) Devices, 4) Digital Skills & Technical Support, and 5) Outreach & Assistance. The majority of the Internet for All Seattle Action Plan items and data fall under these five areas. Source data for Internet for All maps and dashboards.Updated quarterly. Last update: March 4, 2024. ATTRIBUTE NAME DEFINITION ADDITIONAL INFORMATION Resource Organization or program providing metrics for this dashboard. Access for All Program - City of Seattle program to connect eligible organizations and locations in Seattle with free high speed internet service in partnership with Comcast, Astound Broadband, and Lumen. City of Seattle Facilities - City owned buildings, including Community Centers, City Hall, Seattle Center and others. Internet Essentials Program - Low-cost internet program provided by Comcast offering $9.95/month + tax for eligible households. Internet First Program - Low-cost internet program provided by Astound offering $50 Mbps Internet* to qualifying low-income households. Other Partners - Other organizations partnering with the City of Seattle. Seattle Housing Authority - An independent public corporation in the city of Seattle responsible for public housing for low-income, elderly, and disabled residents. Seattle IT Digital Equity - City of Seattle, Seattle Information Technology Department Digital Equity Program. Seattle IT Digital Navigator - Seattle IT grant program providing funding to community-based organizations to provide digital navigation services. Seattle IT Technology Matching Fund - City of Seattle grant program providing funding to community-based organizations to increase internet access and adoption. Seattle Public Library - The publ

  20. GeoStrat Jurassic Report (ArcGIS Version)

    • open-data-ukcs-transition.hub.arcgis.com
    • hub.arcgis.com
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Sea Transition Authority (2025). GeoStrat Jurassic Report (ArcGIS Version) [Dataset]. https://open-data-ukcs-transition.hub.arcgis.com/documents/f410463a3d514d4eaa7d19509aacef76
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    North Sea Transition Authority
    Area covered
    Description

    Geostrat Report – The Sequence Stratigraphy and Sandstone Play Fairways of the Late Jurassic Humber Group of the UK Central Graben

    This non-exclusive report was purchased by the NSTA from Geostrat as part of the Data Purchase tender process (TRN097012017) that was carried out during Q1 2017. The contents do not necessarily reflect the technical view of the NSTA but the report is being published in the interests of making additional sources of data and interpretation available for use by the wider industry and academic communities.

    The Geostrat report provides stratigraphic analyses and interpretations of data from the Late Jurassic to Early Cretaceous Humber Group across the UK Central Graben and includes a series of depositional sequence maps for eight stratigraphic intervals. Stratigraphic interpretations and tops from 189 wells (up to Release 91) are also included in the report.

    The outputs as published here include a full PDF report, ODM/IC .dat format sequence maps, and all stratigraphic tops (lithostratigraphy, ages, sequence stratigraphy) in .csv format (for import into different interpretation platforms).

    In addition, the NSTA has undertaken to provide the well tops, stratigraphic interpretations and sequence maps in an ESRI ArcGIS format that is intended to facilitate the integration of these data into projects and data storage systems held by individual organisations. As part of this process, the Geostrat well names have been matched as far as possible to the NSTA well names from the NSTA Offshore Wells shapefile (as provided on the NSTA’s Open Data website) and the original polygon files have been incorporated into an ArcGIS project. All the files within the GIS folder of this delivery have been created by the NSTA. NSTA web feature services (WFSs) have been included in the map document in this delivery. They replace the use of a shapefile or feature class to represent block, licence and quadrant data. By using a WFS, the data is automatically updated when it becomes available via the NSTA.

    A version of this delivery containing shapefiles for well tops, stratigraphic interpretations and sequence maps is available on the NSTA’s Open Data website for use in other GIS software packages.

    All releases included in the Data Purchase tender process that have been made openly available are summarised in a mapping application available from the NSTA website. The application includes an area of interest outline for each of the products and an overview of which wellbores have been included in the products.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Archive Market Research (2025). GIS Software Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-software-565918

GIS Software Report

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
doc, pdf, pptAvailable download formats
Dataset updated
Jun 17, 2025
Dataset authored and provided by
Archive Market Research
License

https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The global Geographic Information System (GIS) Software market is experiencing robust growth, driven by increasing adoption across various sectors, including government, utilities, and transportation. The market size in 2025 is estimated at $15 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key factors. The rising need for precise location-based data analysis, coupled with advancements in cloud computing and big data technologies, is enabling the development of sophisticated and scalable GIS solutions. Furthermore, the integration of GIS with other technologies, such as artificial intelligence (AI) and the Internet of Things (IoT), is opening new avenues for innovation and application. This leads to enhanced spatial data management, improved decision-making capabilities, and optimized resource allocation across diverse industries. Government initiatives promoting digital transformation and smart city development also contribute significantly to market growth. However, the market faces certain challenges. High initial investment costs for software and infrastructure, along with the need for skilled professionals to operate and maintain these systems, can hinder wider adoption, particularly among smaller organizations. Data security and privacy concerns associated with handling sensitive geospatial data also pose a significant restraint. Despite these limitations, the overall market outlook for GIS software remains highly positive, driven by the increasing reliance on location intelligence across a broad spectrum of industries and the continuous evolution of GIS technologies. The increasing availability of open-source GIS software is also expected to foster market growth, particularly in developing economies. By 2033, the market is projected to reach approximately $45 billion, signifying a substantial increase in market value and adoption.

Search
Clear search
Close search
Google apps
Main menu