23 datasets found
  1. Cost of living index in India 2024, by city

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in India 2024, by city [Dataset]. https://www.statista.com/statistics/1399330/india-cost-of-living-index-by-city/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    As of September 2024, Mumbai had the highest cost of living among other cities in the country, with an index value of ****. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of ****.  What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.

  2. Cost of International Education

    • kaggle.com
    Updated May 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Cost of International Education [Dataset]. https://www.kaggle.com/datasets/adilshamim8/cost-of-international-education
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Adil Shamim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Cost of International Education dataset compiles detailed financial information for students pursuing higher education abroad. It covers multiple countries, cities, and universities around the world, capturing the full tuition and living expenses spectrum alongside key ancillary costs. With standardized fields such as tuition in USD, living-cost indices, rent, visa fees, insurance, and up-to-date exchange rates, it enables comparative analysis across programs, degree levels, and geographies. Whether you’re a prospective international student mapping out budgets, an educational consultant advising on affordability, or a researcher studying global education economics, this dataset offers a comprehensive foundation for data-driven insights.

    Description

    ColumnTypeDescription
    CountrystringISO country name where the university is located (e.g., “Germany”, “Australia”).
    CitystringCity in which the institution sits (e.g., “Munich”, “Melbourne”).
    UniversitystringOfficial name of the higher-education institution (e.g., “Technical University of Munich”).
    ProgramstringSpecific course or major (e.g., “Master of Computer Science”, “MBA”).
    LevelstringDegree level of the program: “Undergraduate”, “Master’s”, “PhD”, or other certifications.
    Duration_YearsintegerLength of the program in years (e.g., 2 for a typical Master’s).
    Tuition_USDnumericTotal program tuition cost, converted into U.S. dollars for ease of comparison.
    Living_Cost_IndexnumericA normalized index (often based on global city indices) reflecting relative day-to-day living expenses (food, transport, utilities).
    Rent_USDnumericAverage monthly student accommodation rent in U.S. dollars.
    Visa_Fee_USDnumericOne-time visa application fee payable by international students, in U.S. dollars.
    Insurance_USDnumericAnnual health or student insurance cost in U.S. dollars, as required by many host countries.
    Exchange_RatenumericLocal currency units per U.S. dollar at the time of data collection—vital for currency conversion and trend analysis if rates fluctuate.

    Potential Uses

    • Budget Planning Prospective students can filter by country, program level, or university to forecast total expenses and compare across destinations.
    • Policy Analysis Educational policymakers and NGOs can assess the affordability of international education and design support programs.
    • Economic Research Economists can correlate living-cost indices and tuition levels with enrollment rates or student demographics.
    • University Benchmarking Institutions can benchmark their fees and ancillary costs against peer universities worldwide.

    Notes on Data Collection & Quality

    • Currency Conversions All monetary values are unified to USD using contemporaneous exchange rates to facilitate direct comparison.
    • Living Cost Index Derived from reputable city-index publications (e.g., Numbeo, Mercer) to standardize disparate cost-of-living metrics.
    • Data Currency Exchange rates and fee schedules should be periodically updated to reflect market fluctuations and policy changes.

    Feel free to explore, visualize, and extend this dataset for deeper insights into the true cost of studying abroad!

  3. U.S. projected Consumer Price Index 2010-2029

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. projected Consumer Price Index 2010-2029 [Dataset]. https://www.statista.com/statistics/244993/projected-consumer-price-index-in-the-united-states/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the U.S. Consumer Price Index was 309.42, and is projected to increase to 352.27 by 2029. The base period was 1982-84. The monthly CPI for all urban consumers in the U.S. can be accessed here. After a time of high inflation, the U.S. inflation rateis projected fall to two percent by 2027. United States Consumer Price Index ForecastIt is projected that the CPI will continue to rise year over year, reaching 325.6 in 2027. The Consumer Price Index of all urban consumers in previous years was lower, and has risen every year since 1992, except in 2009, when the CPI went from 215.30 in 2008 to 214.54 in 2009. The monthly unadjusted Consumer Price Index was 296.17 for the month of August in 2022. The U.S. CPI measures changes in the price of consumer goods and services purchased by households and is thought to reflect inflation in the U.S. as well as the health of the economy. The U.S. Bureau of Labor Statistics calculates the CPI and defines it as, "a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services." The BLS records the price of thousands of goods and services month by month. They consider goods and services within eight main categories: food and beverage, housing, apparel, transportation, medical care, recreation, education, and other goods and services. They aggregate the data collected in order to compare how much it would cost a consumer to buy the same market basket of goods and services within one month or one year compared with the previous month or year. Given that the CPI is used to calculate U.S. inflation, the CPI influences the annual adjustments of many financial institutions in the United States, both private and public. Wages, social security payments, and pensions are all affected by the CPI.

  4. A

    ‘🚊 Consumer Price Index’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 28, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2013). ‘🚊 Consumer Price Index’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-consumer-price-index-ba9d/latest
    Explore at:
    Dataset updated
    Aug 28, 2013
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘🚊 Consumer Price Index’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/consumer-price-indexe on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    9The Consumer Price Index for All Urban Consumers: All Items (CPIAUCSL) is a measure of the average monthly change in the price for goods and services paid by urban consumers between any two time periods.(1) It can also represent the buying habits of urban consumers. This particular index includes roughly 88 percent of the total population, accounting for wage earners, clerical workers, technical workers, self-employed, short-term workers, unemployed, retirees, and those not in the labor force.(1)

    The CPIs are based on prices for food, clothing, shelter, and fuels; transportation fares; service fees (e.g., water and sewer service); and sales taxes. Prices are collected monthly from about 4,000 housing units and approximately 26,000 retail establishments across 87 urban areas.(1) To calculate the index, price changes are averaged with weights representing their importance in the spending of the particular group. The index measures price changes (as a percent change) from a predetermined reference date.(1) In addition to the original unadjusted index distributed, the Bureau of Labor Statistics also releases a seasonally adjusted index. The unadjusted series reflects all factors that may influence a change in prices. However, it can be very useful to look at the seasonally adjusted CPI, which removes the effects of seasonal changes, such as weather, school year, production cycles, and holidays.(1)

    The CPI can be used to recognize periods of inflation and deflation. Significant increases in the CPI within a short time frame might indicate a period of inflation, and significant decreases in CPI within a short time frame might indicate a period of deflation. However, because the CPI includes volatile food and oil prices, it might not be a reliable measure of inflationary and deflationary periods. For a more accurate detection, the core CPI (Consumer Price Index for All Urban Consumers: All Items Less Food & Energy [CPILFESL]) is often used. When using the CPI, please note that it is not applicable to all consumers and should not be used to determine relative living costs.(1) Additionally, the CPI is a statistical measure vulnerable to sampling error since it is based on a sample of prices and not the complete average.(1)

    Attribution: US. Bureau of Labor Statistics from The Federal Reserve Bank of St. Louis

    For more information on the consumer price indexes, see:

    This dataset was created by Finance and contains around 900 samples along with Consumer Price Index For All Urban Consumers: All Items, Title:, technical information and other features such as: - Consumer Price Index For All Urban Consumers: All Items - Title: - and more.

    How to use this dataset

    • Analyze Consumer Price Index For All Urban Consumers: All Items in relation to Title:
    • Study the influence of Consumer Price Index For All Urban Consumers: All Items on Title:
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Finance

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  5. o

    Ontario consumer price index

    • data.ontario.ca
    • open.canada.ca
    xlsx
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture, Food and Rural Affairs (2025). Ontario consumer price index [Dataset]. https://data.ontario.ca/dataset/ontario-consumer-price-index
    Explore at:
    xlsx(29280)Available download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Agriculture, Food and Rural Affairs
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Mar 4, 2025
    Area covered
    Ontario
    Description

    The Consumer Price Index measures changes in the cost of selected food items over time like:

    • food purchased from stores
    • fresh or frozen beef
    • fresh or frozen pork
    • fresh or frozen chicken
    • dairy products and eggs
    • bakery products
    • fresh fruit
    • fresh vegetables
    • food purchased from restaurants
  6. HCI inflation rate in the UK 2023-2024, by income decile

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). HCI inflation rate in the UK 2023-2024, by income decile [Dataset]. https://www.statista.com/topics/9121/cost-of-living-crisis-uk/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    In June 2024, the household cost inflation rate (HCI) for low-income households in the United Kingdom was 1.7 percent, compared with 2.3 percent for middle-income households, and 3.3 percent for high-income households. Unlike other measures of inflation such as the consumer price index (CPI) the HCI isn't based on a fixed basket of goods, but is weighted to show how price changes affect different households by their economic status.

  7. HCI inflation rate in the UK 2022-2024, by household income

    • statista.com
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). HCI inflation rate in the UK 2022-2024, by household income [Dataset]. https://www.statista.com/topics/9121/cost-of-living-crisis-uk/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    The housing costs inflation rate for low-income households in the United Kingdom was noticeably higher than that of high-income ones between April 2022 and April 2023, during a serious cost of living crisis in the UK. As of June 2024, however, the inflation rate for high-income households was higher than that of middle or low incomes ones.

  8. c

    Living Costs and Food Survey, 2022-2023

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Apr 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; Department for Environment (2025). Living Costs and Food Survey, 2022-2023 [Dataset]. http://doi.org/10.5255/UKDA-SN-9335-3
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    Food and Rural Affairs
    Authors
    Office for National Statistics; Department for Environment
    Time period covered
    Apr 1, 2022 - Mar 31, 2023
    Area covered
    United Kingdom
    Variables measured
    Families/households, National
    Measurement technique
    Face-to-face interview
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    Background:
    A household food consumption and expenditure survey has been conducted each year in Great Britain (excluding Northern Ireland) since 1940. At that time the National Food Survey (NFS) covered a sample drawn solely from urban working-class households, but this was extended to a fully demographically representative sample in 1950. From 1957 onwards the Family Expenditure Survey (FES) provided information on all household expenditure patterns including food expenditure, with the NFS providing more detailed information on food consumption and expenditure. The NFS was extended to cover Northern Ireland from 1996 onwards. In April 2001 these surveys were combined to form the Expenditure and Food Survey (EFS), which completely replaced both series. From January 2008, the EFS became known as the Living Costs and Food (LCF) module of the Integrated Household Survey (IHS). As a consequence of this change, the questionnaire was altered to accommodate the insertion of a core set of questions, common to all of the separate modules which together comprised the IHS. Some of these core questions are simply questions which were previously asked in the same or a similar format on all of the IHS component surveys. For further information on the LCF questionnaire, see Volume A of the LCF 2008 User Guide, held with SN 6385. Further information about the LCF, including links to published reports based on the survey, may be found by searching for 'Living Costs and Food Survey' on the ONS website. Further information on the NFS and Living Costs and Food Module of the IHS can be found by searching for 'Family Food' on the GOV.UK website.

    History:
    The LCF (then EFS) was the result of more than two years' development work to bring together the FES and NFS; both survey series were well-established and important sources of information for government and the wider community, and had charted changes and patterns in spending and food consumption since the 1950s. Whilst the NFS and FES series are now finished, users should note that previous data from both series are still available from the UK Data Archive, under GNs 33071 (NFS) and 33057 (FES).

    Purpose of the LCF
    The Office for National Statistics (ONS) has overall project management and financial responsibility for the LCF, while the Department for Environment, Food and Rural Affairs (DEFRA) sponsors the food data element. As with the FES and NFS, the LCF continues to be primarily used to provide information for the Retail Prices Index, National Accounts estimates of household expenditure, analysis of the effect of taxes and benefits, and trends in nutrition. The results are multi-purpose, however, providing an invaluable supply of economic and social data. The merger of the two surveys also brings benefits for users, as a single survey on food expenditure removes the difficulties of reconciling data from two sources.

    Design and methodology The design of the LCF is based on the old FES, although the use of new processing software by the data creators has resulted in a dataset which differs from the previous structure. The most significant change in terms of reporting expenditure, however, is the introduction of the European Standard Classification of Individual Consumption by Purpose (COICOP), in place of the codes previously used. An additional level of hierarchy has been developed to improve the mapping to the previous codes. The LCF was conducted on a financial year basis from 2001, then moved to a calendar year basis from January 2006 (to complement the IHS) until 2015-16, when the financial year survey was reinstated at the request of users. Therefore, whilst SN 5688 covers April 2005 - March 2006, SN 5986 covers January-December 2006. Subsequent years cover January-December until 2014. SN 8210 returns to the financial year survey and currently covers April 2015 - March 2016.

    Northern Ireland sample
    Users should note that, due to funding constraints, from January 2010 the Northern Ireland (NI) sample used for the LCF was reduced to a sample proportionate to the NI population relative to the UK.

    Family Food database:
    'Family Food' is an annual publication which provides detailed statistical information on purchased quantities, expenditure and nutrient intakes derived from both household and eating out food and drink. Data is collected for a sample of households in the United Kingdom using self-reported diaries of all purchases, including food eaten out, over a two week period. Where possible quantities are recorded in the diaries but otherwise estimated. Energy and nutrient intakes are calculated using standard nutrient composition data for each of some 500 types of food. Current estimates are based on data collected in the Family Food...

  9. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  10. k

    Five Point (FPHstock) Shares: The Future of California Living (Forecast)

    • kappasignal.com
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Five Point (FPHstock) Shares: The Future of California Living (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/five-point-fphstock-shares-future-of.html
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    California
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Five Point (FPHstock) Shares: The Future of California Living

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. SNDA Sonida Senior Living Inc. Common Stock (Forecast)

    • kappasignal.com
    Updated Dec 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). SNDA Sonida Senior Living Inc. Common Stock (Forecast) [Dataset]. https://www.kappasignal.com/2022/12/snda-sonida-senior-living-inc-common.html
    Explore at:
    Dataset updated
    Dec 9, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SNDA Sonida Senior Living Inc. Common Stock

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. BKD Brookdale Senior Living Inc. Common Stock (Forecast)

    • kappasignal.com
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). BKD Brookdale Senior Living Inc. Common Stock (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/bkd-brookdale-senior-living-inc-common.html
    Explore at:
    Dataset updated
    Jun 4, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    BKD Brookdale Senior Living Inc. Common Stock

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. ILAG Intelligent Living Application Group Inc. Ordinary Shares (Forecast)

    • kappasignal.com
    Updated Jan 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). ILAG Intelligent Living Application Group Inc. Ordinary Shares (Forecast) [Dataset]. https://www.kappasignal.com/2023/01/ilag-intelligent-living-application.html
    Explore at:
    Dataset updated
    Jan 21, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ILAG Intelligent Living Application Group Inc. Ordinary Shares

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Unite (UTGstock) Campus Living: Bullish Bet on a Growing Student Population...

    • kappasignal.com
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Unite (UTGstock) Campus Living: Bullish Bet on a Growing Student Population (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/unite-utgstock-campus-living-bullish.html
    Explore at:
    Dataset updated
    Sep 19, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Unite (UTGstock) Campus Living: Bullish Bet on a Growing Student Population

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Small Fortunes : National Survey of the Lifestyles and Living Standards of...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashworth, K., Loughborough University; Middleton, S., Loughborough University (2024). Small Fortunes : National Survey of the Lifestyles and Living Standards of Children, 1995 [Dataset]. http://doi.org/10.5255/UKDA-SN-3962-1
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Centre for Research in Social Policyhttp://www.crsp.ac.uk/
    Authors
    Ashworth, K., Loughborough University; Middleton, S., Loughborough University
    Time period covered
    Feb 1, 1995 - Jun 1, 1995
    Area covered
    Great Britain
    Variables measured
    Families/households, National, Households
    Measurement technique
    Face-to-face interview, Self-completion, Diaries, CAPI was used for the interviews
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    The Small Fortunes Survey is the first ever nationally representative survey of the lifestyles and living standards of British children. Taking the child as the unit of analysis, its main aims were :
    to establish household expenditure on children and to investigate variation by income, age and gender of child and by family size and status;
    to estimate certain of the indirect costs imposed by child rearing;
    to determine the nature and extent of extra household support for children;
    to specify and compare, the minimum direct costs of children according to budget standard, consensual, self-assessment and behavioural definitions;
    to examine the nature and degree of poverty in childhood according to those definitions given above;
    to investigate the 'economics of parenting': the extent to which children's aspirations are met at the expense of the living standards of parents; parent/child interactions on finance; parents' economic aspirations for their children;
    to explore childhood living standards from children's own perspectives, investigating their experience of money and its management; knowledge and understanding of the family's financial circumstances in the context of the immediate neighbourhood and wider society.
    Main Topics:

    The dataset includes the following files :
    'adult1' : data from the first interview with the main carer of the child, covering household composition, occupation of adults in household, childcare for selected child, baby-sitting for selected child, housing tenure and size, attitudes to parenting, parental sacrifice, parental aspirations, index of childhood deprivation, access to facilities, parent-child interactions on finance and grouped household income.
    'adult2' : data from second interview with main carer of the child, including educational background of adults in family, household ownership of consumer durables, household income, opportunity costs for main carer associated with the selected child, index of adult deprivation, household savings, housing costs, insurance, other household bills, car ownership and cost, household debts, loans and credit, parent assessed cost of all children in household, parent-assessed measures of deprivation, family relationships and health.
    'babgear' : data from self-completion inventory of equipment, clothes and toys for selected child under two years old.
    'clthposs' : data from self-completion inventory of equipment, clothes and toys for selected child over two years old.
    'prescexp' : data from self-completion diary of expenditure on food, activities and other purchases for selected child not in full-time school.
    'schexp' : data from self-completion diary of expenditure on food, school activities, out-of-school activities, phone calls, other purchases and pocket money for selected child in full-time school.
    'selfcomp' : data from self-completion questionnaire on outings and holidays, birthdays, savings and earnings for selected child.
    'xmas' : data from self-completion questionnaire on Christmas expenditure for selected child.
    'child' : data from interview with selected child, covering pocket money, earnings from employment, items child aspires to own, attitudes to area, knowledge of family income and expenditure, child/parent interactions on finance, career aspirations.

  16. Generational income: The effects of taxes and benefits

    • cy.ons.gov.uk
    • ons.gov.uk
    csv, csvw, txt, xls
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paula Croal (2022). Generational income: The effects of taxes and benefits [Dataset]. https://cy.ons.gov.uk/datasets/generational-income
    Explore at:
    csv, txt, xls, csvwAvailable download formats
    Dataset updated
    Sep 15, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Authors
    Paula Croal
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The effects of direct and indirect taxation and benefits received in cash or kind on household income, across the generations and by age.

    This data is estimated by combining multiple years of the Living Costs and Food Survey from 1978 to financial year ending March 2017 and the Household Finances Statistics, from financial year ending 2018 to financial year ending 2021 with the exception of 1979 and 1981. All financial amounts are adjusted for inflation using the Consumer Prices Index including owner occupiers’ housing costs (CPIH) excluding Council Tax, to their financial year ending March 2018. For example, the mean disposable income for those aged 35 and born in the 1970’s (£35,752) is estimated by taking the average (in real terms) of the household disposable income for these people across the combined dataset.

  17. Cost inflation index in India FY 2002-2024

    • statista.com
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cost inflation index in India FY 2002-2024 [Dataset]. https://www.statista.com/statistics/1360962/india-cost-inflation-index/
    Explore at:
    Dataset updated
    Mar 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    During the financial year 2023, the cost inflation index (CII) in India stood at 348. This was an increase from the previous year's figure of 331. The CII is used to compute an asset's inflation-adjusted cost price. It is used to assess the inflation value of assets like land, houses, jewelry etc.

  18. Inflation rate in the UK 2015-2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Inflation rate in the UK 2015-2025 [Dataset]. https://www.statista.com/statistics/306648/inflation-rate-consumer-price-index-cpi-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - May 2025
    Area covered
    United Kingdom
    Description

    The UK inflation rate was 3.4 percent in May 2025, down from 3.5 percent in the previous month, and the fastest rate of inflation since February 2024. Between September 2022 and March 2023, the UK experienced seven months of double-digit inflation, which peaked at 11.1 percent in October 2022. Due to this long period of high inflation, UK consumer prices have increased by over 20 percent in the last three years. As of the most recent month, prices were rising fastest in the communications sector, at 6.1 percent, but were falling in both the furniture and transport sectors, at -0.3 percent and -0.6 percent respectively.
    The Cost of Living Crisis High inflation is one of the main factors behind the ongoing Cost of Living Crisis in the UK, which, despite subsiding somewhat in 2024, is still impacting households going into 2025. In December 2024, for example, 56 percent of UK households reported their cost of living was increasing compared with the previous month, up from 45 percent in July, but far lower than at the height of the crisis in 2022. After global energy prices spiraled that year, the UK's energy price cap increased substantially. The cap, which limits what suppliers can charge consumers, reached 3,549 British pounds per year in October 2022, compared with 1,277 pounds a year earlier. Along with soaring food costs, high-energy bills have hit UK households hard, especially lower income ones that spend more of their earnings on housing costs. As a result of these factors, UK households experienced their biggest fall in living standards in decades in 2022/23. Global inflation crisis causes rapid surge in prices The UK's high inflation, and cost of living crisis in 2022 had its origins in the COVID-19 pandemic. Following the initial waves of the virus, global supply chains struggled to meet the renewed demand for goods and services. Food and energy prices, which were already high, increased further in 2022. Russia's invasion of Ukraine in February 2022 brought an end to the era of cheap gas flowing to European markets from Russia. The war also disrupted global food markets, as both Russia and Ukraine are major exporters of cereal crops. As a result of these factors, inflation surged across Europe and in other parts of the world, but typically declined in 2023, and approached more usual levels by 2024.

  19. Global inflation rate from 2000 to 2030

    • statista.com
    • ai-chatbox.pro
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global inflation rate from 2000 to 2030 [Dataset]. https://www.statista.com/statistics/256598/global-inflation-rate-compared-to-previous-year/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2025
    Area covered
    Worldwide
    Description

    Inflation is generally defined as the continued increase in the average prices of goods and services in a given region. Following the extremely high global inflation experienced in the 1980s and 1990s, global inflation has been relatively stable since the turn of the millennium, usually hovering between three and five percent per year. There was a sharp increase in 2008 due to the global financial crisis now known as the Great Recession, but inflation was fairly stable throughout the 2010s, before the current inflation crisis began in 2021. Recent years Despite the economic impact of the coronavirus pandemic, the global inflation rate fell to 3.26 percent in the pandemic's first year, before rising to 4.66 percent in 2021. This increase came as the impact of supply chain delays began to take more of an effect on consumer prices, before the Russia-Ukraine war exacerbated this further. A series of compounding issues such as rising energy and food prices, fiscal instability in the wake of the pandemic, and consumer insecurity have created a new global recession, and global inflation in 2024 is estimated to have reached 5.76 percent. This is the highest annual increase in inflation since 1996. Venezuela Venezuela is the country with the highest individual inflation rate in the world, forecast at around 200 percent in 2022. While this is figure is over 100 times larger than the global average in most years, it actually marks a decrease in Venezuela's inflation rate, which had peaked at over 65,000 percent in 2018. Between 2016 and 2021, Venezuela experienced hyperinflation due to the government's excessive spending and printing of money in an attempt to curve its already-high inflation rate, and the wave of migrants that left the country resulted in one of the largest refugee crises in recent years. In addition to its economic problems, political instability and foreign sanctions pose further long-term problems for Venezuela. While hyperinflation may be coming to an end, it remains to be seen how much of an impact this will have on the economy, how living standards will change, and how many refugees may return in the coming years.

  20. a

    Tuition and Living Accommodation Costs for Full-time Students at Canadian...

    • open.alberta.ca
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tuition and Living Accommodation Costs for Full-time Students at Canadian Degree-granting Institutions (2011-2012) [Dataset]. https://open.alberta.ca/dataset/tuition-and-living-accommodation-costs-for-full-time-students-at-canadian-institutions-2011-2012
    Explore at:
    Area covered
    Canada
    Description

    (StatCan Product) University tuition fees for full-time undergraduate and graduate Canadian students including additional fees and tuition fees of undergraduate and graduate foreign students and living accommodation costs at residences. Customization details: This information product has been customized to present university tuition fees for full-time undergraduate and graduate Canadian students as well as tuition fees of undergraduate and graduate foreign students. It also presents additional fees for full-time undergraduate and graduate Canadian students as well as living accommodation costs at residences. Within this information product there are seven tables: For the first four tables: T1: Universtity Tuition Fees for Full-time Undergraduate Canadian Students (2011-2012) T2: Universtity Tuition Fees for Full-time Graduate Canadian Students (2011-2012) T3: Universtity Tuition Fees for Full-time Undergraduate Foreign Students (2011-2012) T4: Universtity Tuition Fees for Full-time Graduate Foreign Students (2011-2012) The following variables are presented: - Institution # - Institution name - Province - Lower and Upper Intervals for the following degrees: - Education - Visual & performing Arts, and Comm. Technologies - Humanities - Social and Behavioural Science - Law - Executive MBA - Regular MBA - Business Mgt and Public Administration - Physical and Life Sciences and Technologies - Math, Computer and Information Sciences - Engineering - Architecture and Related Technologies - Agriculture, Natural Resources and Conservation - Dentistry - Medicine - Nursing - Pharmacy - Veterinary Medicine - Other Health, Parks, Recreation and Fitness - Personal, Protective and Transportation services - Other For the following two tables: T5: Additional Fees for Full-time Undergraduate Canadian Students (2011-2012) T6: Additional Fees for Full-time Graduate Canadian Students (2011-2012) The following variables are presented: - Institution # - Institution name - Province - Athletics - Health Services - Student Association - Other - Total And for the final table: T7: Living Accommodation Costs at Residences (2011-2012) The following variables are presented: - Institution # - Institution name - Province - Upper and Lower Intervals for the following costs: - Room only - Meal plan only - Room and Meal plan package - Married Students (Room only) Tuition and Living Accommodation Costs for Full-time Students at Canadian Degree-granting Institutions (TLAC) The Tuition and Living Accommodation Costs for Full-time Students at Canadian Degree-granting Institutions Survey was developed to provide student financial information (tuition fees and living accommodation costs) on all universities and degree-granting colleges in Canada. This information: - gives stakeholders, the public and students an annual guide to tuition costs as well as providing information on trends in tuition fees; - contributes to a better understanding of the student financial position for that level of education; - helps in the development of policies in this sector; - is used to calculate the Consumer Price Index; - facilitates interprovincial comparisons; - facilitates comparisons across institutions. Each year, data are collected for both the previous and current academic years. The previous year's data are then revised to become final while the data for the current year are preliminary and will be revised with those collected during the next cycle.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in India 2024, by city [Dataset]. https://www.statista.com/statistics/1399330/india-cost-of-living-index-by-city/
Organization logo

Cost of living index in India 2024, by city

Explore at:
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
India
Description

As of September 2024, Mumbai had the highest cost of living among other cities in the country, with an index value of ****. Gurgaon, a satellite city of Delhi and part of the National Capital Region (NCR) followed it with an index value of ****.  What is cost of living? The cost of living varies depending on geographical regions and factors that affect the cost of living in an area include housing, food, utilities, clothing, childcare, and fuel among others. The cost of living is calculated based on different measures such as the consumer price index (CPI), living cost indexes, and wage price index. CPI refers to the change in the value of consumer goods and services. The wage price index, on the other hand, measures the change in labor services prices due to market pressures. Lastly, the living cost indexes calculate the impact of changing costs on different households. The relationship between wages and costs determines affordability and shifts in the cost of living. Mumbai tops the list Mumbai usually tops the list of most expensive cities in India. As the financial and entertainment hub of the country, Mumbai offers wide opportunities and attracts talent from all over the country. It is the second-largest city in India and has one of the most expensive real estates in the world.

Search
Clear search
Close search
Google apps
Main menu