Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.
Facebook
TwitterThere is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map shows the median household income in the United States in 2012. Information for the 2012 Median Household Income is an estimate of income for calendar year 2012. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases. The median is the value that divides the distribution of household income into two equal parts. The median household income in the United States overall was $50,157 in 2012. This map shows Esri's 2012 estimates using Census 2010 geographies.
The geography depicts States at greater than 50m scale, Counties at 7.5m to 50m scale, Census Tracts at 200k to 7.5m scale, and Census Block Groups at less than 200k scale.
Scale Range: 1:591,657,528 down to 1:72,224.
For more information on this map, including the terms of use, visit us online.
Facebook
TwitterThis map shows the average household income in the U.S. in 2022 in a multiscale map by country, state, county, ZIP Code, tract, and block group. Information for the average household income is an estimate of income for calendar year 2022. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases.The pop-up is configured to include the following information for each geography level:Average household incomeMedian household incomeCount of households by income groupAverage household income by householder age groupThe data shown is from Esri's 2022 Updated Demographic estimates using Census 2020 geographies. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data.Esri's U.S. Updated Demographic (2022/2027) Data: Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Additional Esri Resources:Esri DemographicsU.S. 2022/2027 Esri Updated DemographicsEssential demographic vocabularyThis item is for visualization purposes only and cannot be exported or used in analysis.Permitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Facebook
TwitterRetirement Notice: This item is in mature support as of June 2023 and will be retired in December 2025. A replacement item has not been identified at this time. Esri recommends updating your maps and apps to phase out use of this item.This map shows the average household income in the U.S. in 2022 in a multiscale map by country, state, county, ZIP Code, tract, and block group. Information for the average household income is an estimate of income for calendar year 2022. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases.The pop-up is configured to include the following information for each geography level:Average household incomeMedian household incomeCount of households by income groupAverage household income by householder age group Permitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the Global Drone Live Map Streaming to EOCs market size was valued at $1.25 billion in 2024 and is projected to reach $4.87 billion by 2033, expanding at a robust CAGR of 16.5% during the forecast period of 2025–2033. A major factor propelling the growth of this market globally is the increasing need for real-time situational awareness in emergency management and public safety operations. Live map streaming from drones to Emergency Operations Centers (EOCs) enables rapid decision-making, enhances operational efficiency, and significantly improves response times during critical incidents such as natural disasters, large-scale public events, and security threats. The integration of advanced imaging technologies, AI-driven analytics, and seamless cloud connectivity further accelerates the adoption and scalability of drone live map streaming solutions across diverse sectors.
North America currently holds the largest share of the global Drone Live Map Streaming to EOCs market, accounting for approximately 38% of the total market value in 2024. This dominance is primarily attributed to the region’s mature technological ecosystem, early adoption of advanced drone technologies, and robust investments in public safety infrastructure. The United States, in particular, has been a frontrunner due to significant federal and state funding for emergency management, stringent regulatory frameworks that support safe drone operations, and the presence of leading solution providers. Moreover, the collaboration between technology vendors, local governments, and first responder agencies has fostered a conducive environment for innovation and rapid deployment of live map streaming platforms. The established network of Emergency Operations Centers across North America further ensures seamless integration of drone data into command and control workflows, solidifying the region’s leadership position.
The Asia Pacific region is projected to be the fastest-growing market, with a forecasted CAGR of 19.2% from 2025 to 2033. This rapid growth is driven by escalating investments in smart city initiatives, increasing frequency of natural disasters, and rising governmental focus on disaster preparedness and response. Countries such as China, Japan, and India are aggressively deploying drone-based technologies to enhance their emergency response capabilities, leveraging both local innovation and international partnerships. The proliferation of affordable drone hardware, coupled with expanding 5G and cloud infrastructure, is enabling real-time map streaming even in remote or challenging terrains. Additionally, favorable regulatory reforms and public-private collaborations are accelerating the adoption of these solutions across municipal agencies and law enforcement bodies in the region.
Emerging economies in Latin America, the Middle East, and Africa are beginning to recognize the value of drone live map streaming, particularly for disaster management and public safety applications. However, the pace of adoption is tempered by challenges such as limited funding, lack of skilled personnel, and underdeveloped digital infrastructure. In these regions, pilot projects and donor-funded initiatives are laying the groundwork for broader implementation, with localized demand primarily stemming from urban centers prone to flooding, wildfires, or civil unrest. Policy impacts, including evolving drone regulations and spectrum allocation for wireless data transmission, play a pivotal role in shaping market dynamics. As these economies continue to modernize their emergency response frameworks, the demand for scalable and cost-effective live map streaming solutions is expected to rise steadily.
| Attributes | Details |
| Report Title | Drone Live Map Streaming to EOCs Market Research Report 2033 |
| By Component | Hardware, Software, Services |
| By Application | Disaster Management, |
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Large white, Grade A chicken eggs, sold in a carton of a dozen. Includes organic, non-organic, cage free, free range, and traditional."
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eggs US fell to 2.25 USD/Dozen on December 1, 2025, down 1.77% from the previous day. Over the past month, Eggs US's price has risen 37.63%, but it is still 42.64% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Eggs US.
Facebook
TwitterIn March 2025, inflation amounted to 2.4 percent, while wages grew by 4.3 percent. The inflation rate has not exceeded the rate of wage growth since January 2023. Inflation in 2022 The high rates of inflation in 2022 meant that the real terms value of American wages took a hit. Many Americans report feelings of concern over the economy and a worsening of their financial situation. The inflation situation in the United States is one that was experienced globally in 2022, mainly due to COVID-19 related supply chain constraints and disruption due to the Russian invasion of Ukraine. The monthly inflation rate for the U.S. reached a 40-year high in June 2022 at 9.1 percent, and annual inflation for 2022 reached eight percent. Without appropriate wage increases, Americans will continue to see a decline in their purchasing power. Wages in the U.S. Despite the level of wage growth reaching 6.7 percent in the summer of 2022, it has not been enough to curb the impact of even higher inflation rates. The federally mandated minimum wage in the United States has not increased since 2009, meaning that individuals working minimum wage jobs have taken a real terms pay cut for the last twelve years. There are discrepancies between states - the minimum wage in California can be as high as 15.50 U.S. dollars per hour, while a business in Oklahoma may be as low as two U.S. dollars per hour. However, even the higher wage rates in states like California and Washington may be lacking - one analysis found that if minimum wage had kept up with productivity, the minimum hourly wage in the U.S. should have been 22.88 dollars per hour in 2021. Additionally, the impact of decreased purchasing power due to inflation will impact different parts of society in different ways with stark contrast in average wages due to both gender and race.
Facebook
TwitterThis map shows the median household income in the United States in 2012. Information for the 2012 Median Household Income is an estimate of income for calendar year 2012. Income amounts are expressed in current dollars, including an adjustment for inflation or cost-of-living increases. The median is the value that divides the distribution of household income into two equal parts. The median household income in the United States overall was $50,157 in 2012. This map shows Esri's 2012 estimates using Census 2010 geographies. The data shown is from Esri's 2012 Updated Demographics. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. This map shows Esri's 2012 estimates using Census 2010 geographies.The map is designed to be displayed in conjunction with the Canvas basemap with a transparency of 25%. To use it on other basemaps, try a transparency of 25-50%.Information about the USA Median Household Income map service used in this map is here.
Facebook
TwitterThe American Community Survey (ACS) 5 Year 2016-2020 socioeconomic estimate data is a subset of information derived from the following census tables:B08013 - Aggregate Travel Time To Work Of Workers By Sex;B08303 - Travel Time To Work;B17019 - Poverty Status In The Past 12 Months Of Families By Household Type By Tenure;B17021 - Poverty Status Of Individuals In The Past 12 Months By Living Arrangement;B19001 - Household Income In The Past 12 Months;B19013 - Median Household Income In The Past 12 Months;B19025 - Aggregate Household Income In The Past 12 Months;B19113 - Median Family Income In The Past 12 Months;B19202 - Median Non-family Household Income In The Past 12 Months;B23001 - Sex By Age By Employment Status For The Population 16 Years And Over;B25014 - Tenure By Occupants Per Room;B25026 - Total Population in Occupied Housing Units by Tenure by year Householder Moved into Unit;B25106 - Tenure By Housing Costs As A Percentage Of Household Income In The Past 12 Months;C24010 - Sex By Occupation For The Civilian Employed Population 16 Years And Over;B20004 - Median Earnings In the Past 12 Months (In 2015 Inflation-Adjusted Dollars) by Sex by Educational Attainment for the Population 25 Years and Over;B23006 - Educational Attainment by Employment Status for the Population 25 to 64 Years, and;B24021 - Occupation By Median Earnings In The Past 12 Months (In 2015 Inflation-Adjusted Dollars) For The Full-Time, Year-Round Civilian Employed Population 16 Years And Over.
To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Socioeconomic Estimate Data by CountyDate of Coverage: 2016-2020
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity Project because a functional network of connected wildlands is essential to the continued support of California's diverse natural communities in the face of human development and climate change. The Essential Connectivity Map depicts large, relatively natural habitat blocks that support native biodiversity (Natural Landscape Blocks) and areas essential for ecological connectivity between them (Essential Connectivity Areas). This coarse-scale map was based primarily on the concept of ecological integrity, rather than the needs of particular species. Essential Connectivity Areas are placeholder polygons that can inform land-planning efforts, but that should eventually be replaced by more detailed Linkage Designs, developed at finer resolution based on the needs of particular species and ecological processes. It is important to recognize that even areas outside of Natural Landscape Blocks and Essential Connectivity Areas support important ecological values that should not be "written off" as lacking conservation value. Furthermore, because the Essential Habitat Connectivity Map was created at the statewide scale, based on available statewide data layers, and ignored Natural Landscape Blocks smaller than 2,000 acres squared, it has errors of omission that should be addressed at regional and local scales.
This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterWest Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.