8 datasets found
  1. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  2. Average price per square meter of an apartment in Europe 2025, by city

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average price per square meter of an apartment in Europe 2025, by city [Dataset]. https://www.statista.com/statistics/1052000/cost-of-apartments-in-europe-by-city/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Geneva stands out as Europe's most expensive city for apartment purchases in early 2025, with prices reaching a staggering 15,720 euros per square meter. This Swiss city's real estate market dwarfs even high-cost locations like Zurich and London, highlighting the extreme disparities in housing affordability across the continent. The stark contrast between Geneva and more affordable cities like Nantes, France, where the price was 3,700 euros per square meter, underscores the complex factors influencing urban property markets in Europe. Rental market dynamics and affordability challenges While purchase prices vary widely, rental markets across Europe also show significant differences. London maintained its position as the continent's priciest city for apartment rentals in 2023, with the average monthly costs for a rental apartment amounting to 36.1 euros per square meter. This figure is double the rent in Lisbon, Portugal or Madrid, Spain, and substantially higher than in other major capitals like Paris and Berlin. The disparity in rental costs reflects broader economic trends, housing policies, and the intricate balance of supply and demand in urban centers. Economic factors influencing housing costs The European housing market is influenced by various economic factors, including inflation and energy costs. As of April 2025, the European Union's inflation rate stood at 2.4 percent, with significant variations among member states. Romania experienced the highest inflation at 4.9 percent, while France and Cyprus maintained lower rates. These economic pressures, coupled with rising energy costs, contribute to the overall cost of living and housing affordability across Europe. The volatility in electricity prices, particularly in countries like Italy where rates are projected to reach 153.83 euros per megawatt hour by February 2025, further impacts housing-related expenses for both homeowners and renters.

  3. Average residential real estate square meter prices in Europe 2023, by...

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average residential real estate square meter prices in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/722905/average-residential-square-meter-prices-in-eu-28-per-country/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Europe
    Description

    The average transaction price of new housing in Europe was the highest in Norway, whereas existing homes were the most expensive in Austria. Since there is no central body that collects and tracks transaction activity or house prices across the whole continent or the European Union, not all countries are included. To compile the ranking, the source weighed the transaction prices of residential properties in the most important cities in each country based on data from their national offices. For example, in Germany, the cities included were Munich, Hamburg, Frankfurt, and Berlin. House prices have been soaring, with Sweden topping the ranking Considering the RHPI of houses in Europe (the price index in real terms, which measures price changes of single-family properties adjusted for the impact of inflation), however, the picture changes. Sweden, Luxembourg and Norway top this ranking, meaning residential property prices have surged the most in these countries. Real values were calculated using the so-called Personal Consumption Expenditure Deflator (PCE), This PCE uses both consumer prices as well as consumer expenditures, like medical and health care expenses paid by employers. It is meant to show how expensive housing is compared to the way of living in a country. Home ownership highest in Eastern Europe The home ownership rate in Europe varied from country to country. In 2020, roughly half of all homes in Germany were owner-occupied whereas home ownership was at nearly ** percent in Romania or around ** percent in Slovakia and Lithuania. These numbers were considerably higher than in France or Italy, where homeowners made up ** percent and ** percent of their respective populations.For more information on the topic of property in Europe, visit the following pages as a starting point for your research: real estate investments in Europe and residential real estate in Europe.

  4. Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2020). Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/3399
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    World Bankhttps://www.worldbank.org/
    Time period covered
    2014 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    The Measuring Living Standards in Cities (MLSC) survey is a new instrument designed to enhance understanding of cities in Africa and support evidence based policy design. The instrument was developed under the World Bank’s Spatial Development of African Cities Program, and was piloted in Dar es Salaam (Tanzania) and Durban (South Africa) over the course of 2014/15. These geo-referenced surveys provide information on urban living standards at an unprecedented level of granularity: they can be compared across different geographic levels within the cities, and between areas of ‘regular’ and ‘irregular’ settlement patterns. They also respond to the need to increased understanding of specifically ‘urban’ dimensions of quality of living: housing attributes, access to basic services, and commuting patterns, among others.

    Geographic coverage

    The survey covered households in Dar es Salaam, Tanzania.

    Analysis unit

    • Household

    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE FRAME

    16,000 EAs generated by the Tanzania National Bureau of Statistics (NBS) for the 2012 Census.

    STAGE ONE

    200 EAs sorted into four strata. The central strata was divided into ‘central core, shanty’ and ‘central core, non-shanty’. Two EAs were replaced with reserve EAs as the original EAs were found to be inaccessible.

    STAGE TWO

    12 households randomly selected by systematic equal-probability from updated listing of each EA.

    LISTING METHODOLOGY

    The listing exercise took place between the first and the second stage of sampling. The household listing operations were implemented with computer assisted paperless interviewing (CAPI) techniques, which generates electronic files directly. Enumerators collected basic information about household: the name of the household head name, phone number and total number of household members living in the dwelling. Enumerators also recorded the GPS location of all structures,18 defined the type of structure, and aimed to provide measurement of structure size.

    Listing was preceded by community sensitisation in both cities. In Dar es Salaam, enumerators visited the local chief (Mjumbe) of their assigned EA two days in advance of listing and on the day of listing.

    Enumerators were equipped with maps created on Google My Maps to display shapefiles for the listing exercise. Hardcopies of their respective EA maps were also provided to be use in case of network failure. In Dar es Salaam, enumerators conducted a listing of all households in each of the selected EAs.

    The listing exercise was conducted by 30 enumerators, each of which was assigned between 3 and 9 EAs for listing (enumerators were selected on the basis of performance from a group of 35 that were trained for listing). Enumerators were allocated EAs based on: (i) distance from enumerators’ homes in order to minimize transport time and cost; (ii) distance between the EAs; and (iii) safety and response rate considerations.

    SURVEY IMPLEMENTATION

    The surveys were fielded over the course of several months. The Dar es Salaam survey was implemented between November 2014 and January 2015.

    Cases were assigned to interviewers using Survey Solutions. Interviewers were provided with both an electronic and hardcopy map, as well as a printed completion form, and could contact the listing manager through email, WhatsApp, or google hangouts if they were unable to find the assigned house.

    Completing the survey often required repeat visits. This is because the survey required input from up to three separate respondents: the main respondent, who could be any present household member, and answered questions on household composition, basic information on members, assets, remittances, grants, housing, properties and consumption; the household head, who answered questions on residential history, satisfaction, employment, time use and commuting; and a random respondent, who was randomly selected from household members over the age of 12 (not including the head), who responded questions on satisfaction, employment, time use and commuting. Enumerators visited each house at least twice before a component could be marked as unavailable - in many cases, however, more than two visits were conducted.

    Quality assurance procedures included: (i) In-interview feedback from CAPI, which provided a check that modules or questions were not missing, and alerted interviewers to mistakes and inconsistencies in given answers, so that these could be addressed while the interviewer was still with the respondent; (ii) Aggregate checks conducted using the Survey Solutions Supervisor application, which allows supervisors to identify common mistakes (applied to all initial interviews, and then through spot checks); interviewer performance and completion monitoring conducted by the implementing firm, through interviewer and EA level summaries of response rates, interview completion, and progress; (iii) weekly summaries of key indictors provided by the World Bank team (following each data delivery); (iv) direct observation of fieldwork; and (v) back check interviews. A key lesson learned is that the portion of back check interviews should be agreed in advance with the implementing firm: in Dar es Salaam back checks were conducted on 5% of the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Response rate

    Non-response rate: 13%

  5. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  6. Big Mac index worldwide 2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Big Mac index worldwide 2025 [Dataset]. https://www.statista.com/statistics/274326/big-mac-index-global-prices-for-a-big-mac/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2025
    Area covered
    Worldwide
    Description

    At **** U.S. dollars, Switzerland has the most expensive Big Macs in the world, according to the January 2025 Big Mac index. Concurrently, the cost of a Big Mac was **** dollars in the U.S., and **** U.S. dollars in the Euro area. What is the Big Mac index? The Big Mac index, published by The Economist, is a novel way of measuring whether the market exchange rates for different countries’ currencies are overvalued or undervalued. It does this by measuring each currency against a common standard – the Big Mac hamburger sold by McDonald’s restaurants all over the world. Twice a year the Economist converts the average national price of a Big Mac into U.S. dollars using the exchange rate at that point in time. As a Big Mac is a completely standardized product across the world, the argument goes that it should have the same relative cost in every country. Differences in the cost of a Big Mac expressed as U.S. dollars therefore reflect differences in the purchasing power of each currency. Is the Big Mac index a good measure of purchasing power parity? Purchasing power parity (PPP) is the idea that items should cost the same in different countries, based on the exchange rate at that time. This relationship does not hold in practice. Factors like tax rates, wage regulations, whether components need to be imported, and the level of market competition all contribute to price variations between countries. The Big Mac index does measure this basic point – that one U.S. dollar can buy more in some countries than others. There are more accurate ways to measure differences in PPP though, which convert a larger range of products into their dollar price. Adjusting for PPP can have a massive effect on how we understand a country’s economy. The country with the largest GDP adjusted for PPP is China, but when looking at the unadjusted GDP of different countries, the U.S. has the largest economy.

  7. Median rent for a furnished apartment in Europe 2025, by city

    • statista.com
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median rent for a furnished apartment in Europe 2025, by city [Dataset]. https://www.statista.com/statistics/1084608/average-rental-cost-apartment-europe-by-city/
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    Amsterdam is set to maintain its position as Europe's most expensive city for apartment rentals in 2025, with median costs reaching 2,500 euros per month for a furnished unit. This figure is double the rent in Prague and significantly higher than other major European capitals like Paris, Berlin, and Madrid. The stark difference in rental costs across European cities reflects broader economic trends, housing policies, and the complex interplay between supply and demand in urban centers. Factors driving rental costs across Europe The disparity in rental prices across European cities can be attributed to various factors. In countries like Switzerland, Germany, and Austria, a higher proportion of the population lives in rental housing. This trend contributes to increased demand and potentially higher living costs in these nations. Conversely, many Eastern and Southern European countries have homeownership rates exceeding 90 percent, which may help keep rental prices lower in those regions. Housing affordability and market dynamics The relationship between housing prices and rental rates varies significantly across Europe. As of 2024, countries like Turkey, Iceland, Portugal, and Hungary had the highest house price to rent ratio indices. This indicates a widening gap between property values and rental costs since 2015. The affordability of homeownership versus renting differs greatly among European nations, with some countries experiencing rapid increases in property values that outpace rental growth. These market dynamics influence rental costs and contribute to the diverse rental landscape observed across European cities.

  8. House price to income ratio in Europe 2022-2023, by country

    • statista.com
    • ai-chatbox.pro
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House price to income ratio in Europe 2022-2023, by country [Dataset]. https://www.statista.com/statistics/1106669/house-price-to-income-ratio-europe/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    The house price to income index in Europe declined in almost all European countries in 2023, indicating that income grew faster than house prices. Portugal, Luxembourg, and the Netherlands led the house price to income index ranking in 2023, with values exceeding *** index points. Romania, Bulgaria, and Finland were on the other side of the spectrum, with less than 100 index points. The house price to income ratio is an indicator for the development of housing affordability across OECD countries and is calculated as the nominal house prices divided by nominal disposable income per head, with 2015 chosen as a base year. A ratio higher than 100 means that the nominal house price growth since 2015 has outpaced the nominal disposable income growth, and housing is therefore comparatively less affordable. In 2023, the OECD average stood at ***** index points.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
Organization logo

Cost of living index in the U.S. 2024, by state

Explore at:
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

Search
Clear search
Close search
Google apps
Main menu