The Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 consists of estimates of human population (number of persons per pixel), consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
In 2024, a total of ** world records were chalked up by Chinese athletes, representing a slight decrease from the previous year. Eight world records were made in the weightlifting competitions and nine were from shooting in 2023.
The deadliest animals in the world based on the number of human deaths per year is not a creature that humans usually find scary, such as a lion or snake. Mosquitos are by far the deadliest creature in the world when it comes to annual human deaths, causing around one million deaths per year, compared to 100,000 deaths from snakes and 250 from lions. Perhaps surpringly, dogs are the third deadliest animal to humans. Dogs are responsible for around 30,000 human deaths per year, with the vast majority of these deaths resulting from rabies that is transmitted from the dog.
Malaria
Mosquitos are the deadliest creature in the world because they transmit a number of deadly diseases, the worst of which is malaria. Malaria is a mosquito-borne disease caused by a parasite that results in fever, chills, headache, vomiting and, if left untreated, death. Malaria disproportionately affects poorer regions of the world such as Africa and South-East Asia. In 2020, there were around 627,000 deaths from malaria worldwide.
Mosquito-borne diseases in the U.S.
The most common mosquito-borne diseases reported in the United States include West Nile virus, malaria, and dengue viruses. Many of these cases, however, are from travelers who contracted the disease in another country - this is especially true for malaria, Zika, and dengue. In 2018, the states of California, New York, and Texas reported the highest number of mosquito-borne disease cases in the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monaco Population: Total: Aged 15-64 data was reported at 18,491.000 Person in 2023. This records a decrease from the previous number of 18,617.000 Person for 2022. Monaco Population: Total: Aged 15-64 data is updated yearly, averaging 19,229.000 Person from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 20,914.000 Person in 2000 and a record low of 14,530.000 Person in 1960. Monaco Population: Total: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Monaco – Table MC.World Bank.WDI: Population and Urbanization Statistics. Total population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;World Bank staff estimates using the World Bank's total population and age/sex distributions of the United Nations Population Division's World Population Prospects: 2022 Revision.;Sum;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
In 2023, the total population in the Arab World increased by **** million inhabitants (+**** percent) compared to 2022. Therefore, the total population in the Arab World reached a peak in 2023 with ****** million inhabitants. Notably, the total population continuously increased over the last years.The total population of a country refers to the de facto number of people residing in a country, regardless of citizenship or legal status.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population, Total for Upper Middle Income Countries (SPPOPTOTLUMC) from 1960 to 2024 about income and population.
Gridded Population of the World, Version 4 (GPWv4) Population Density, Revision 10 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tajikistan TJ: Population: as % of Total: Aged 15-64 data was reported at 61.282 % in 2017. This records a decrease from the previous number of 61.448 % for 2016. Tajikistan TJ: Population: as % of Total: Aged 15-64 data is updated yearly, averaging 52.757 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 61.565 % in 2014 and a record low of 48.781 % in 1968. Tajikistan TJ: Population: as % of Total: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Tajikistan – Table TJ.World Bank.WDI: Population and Urbanization Statistics. Total population between the ages 15 to 64 as a percentage of the total population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average;
SP.POP.TOTL. Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates. The World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially-recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: as % of Total: Female: Aged 65 and Above data was reported at 16.925 % in 2017. This records an increase from the previous number of 16.550 % for 2016. United States US: Population: as % of Total: Female: Aged 65 and Above data is updated yearly, averaging 14.035 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 16.925 % in 2017 and a record low of 10.023 % in 1960. United States US: Population: as % of Total: Female: Aged 65 and Above data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Population and Urbanization Statistics. Female population 65 years of age or older as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.2.]What does the data show? The Annual Count of Hot Summer Days is the number of days per year where the maximum daily temperature is above 30°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘hot summer days’ is used to refer to the threshold and temperatures above 30°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Hot Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of hot summer days to previous values.What are the possible societal impacts?The Annual Count of Hot Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 30°C. Impacts include:Increased heat related illnesses, hospital admissions or death.Transport disruption due to overheating of railway infrastructure. Overhead power lines also become less efficient. Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Extreme Summer Days (days above 35°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Hot Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Hot Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Hot Summer Days show the number of hot summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘HSD’ (where HSD means Hot Summer Days), the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Hot Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Hot Summer Days 2.5 median’ is ‘HotSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HSD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Hot Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Denmark: Electricity consumption percent of world total: The latest value from 2023 is 0.131 percent, an increase from 0.129 percent in 2022. In comparison, the world average is 0.529 percent, based on data from 189 countries. Historically, the average for Denmark from 1980 to 2023 is 0.248 percent. The minimum value, 0.129 percent, was reached in 2022 while the maximum of 0.394 percent was recorded in 1980.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Imports: % of Total Goods Imports: The Arab World data was reported at 3.044 % in 2016. This records an increase from the previous number of 2.432 % for 2015. Nigeria NG: Imports: % of Total Goods Imports: The Arab World data is updated yearly, averaging 0.909 % from Dec 1962 (Median) to 2016, with 54 observations. The data reached an all-time high of 3.228 % in 1996 and a record low of 0.189 % in 1985. Nigeria NG: Imports: % of Total Goods Imports: The Arab World data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank: Imports. Merchandise imports from economies in the Arab World are the sum of merchandise imports by the reporting economy from economies in the Arab World. Data are expressed as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Saudi Arabia: Electricity consumption percent of world total: The latest value from 2023 is 1.424 percent, a decline from 1.438 percent in 2022. In comparison, the world average is 0.529 percent, based on data from 189 countries. Historically, the average for Saudi Arabia from 1980 to 2023 is 0.969 percent. The minimum value, 0.342 percent, was reached in 1980 while the maximum of 1.519 percent was recorded in 2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Merchandise imports from economies in the Arab World (% of total merchandise imports) in Jamaica was reported at 0.30806 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Jamaica - Merchandise imports from economies in the Arab World (% of total merchandise imports) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Merchandise imports from economies in the Arab World (% of total merchandise imports) in Saudi Arabia was reported at 14.54 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Saudi Arabia - Merchandise imports from economies in the Arab World (% of total merchandise imports) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Merchandise exports to economies in the Arab World (% of total merchandise exports) in Benin was reported at 7.8647 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Benin - Merchandise exports to economies in the Arab World (% of total merchandise exports) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
The Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 consists of estimates of human population (number of persons per pixel), consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.