Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Facebook
TwitterAs of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
Facebook
TwitterAs of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
Facebook
TwitterABSTRACT Background : The Covid-19 pandemic associated with the SARS-CoV-2 has caused very high death tolls in many countries, while it has had less prevalence in other countries of Africa and Asia. Climate and geographic conditions, as well as other epidemiologic and demographic conditions, were a matter of debate on whether or not they could have an effect on the prevalence of Covid-19. Objective : In the present work, we sought a possible relevance of the geographic location of a given country on its Covid-19 prevalence. On the other hand, we sought a possible relation between the history of epidemiologic and demographic conditions of the populations and the prevalence of Covid-19 across four continents (America, Europe, Africa, and Asia). We also searched for a possible impact of pre-pandemic alcohol consumption in each country on the two year death tolls across the four continents. Methods : We have sought the death toll caused by Covid-19 in 39 countries and obtained the registered deaths from specialized web pages. For every country in the study, we have analysed the correlation of the Covid-19 death numbers with its geographic latitude, and its associated climate conditions, such as the mean annual temperature, the average annual sunshine hours, and the average annual UV index. We also analyzed the correlation of the Covid-19 death numbers with epidemiologic conditions such as cancer score and Alzheimer score, and with demographic parameters such as birth rate, mortality rate, fertility rate, and the percentage of people aged 65 and above. In regard to consumption habits, we searched for a possible relation between alcohol intake levels per capita and the Covid-19 death numbers in each country. Correlation factors and determination factors, as well as analyses by simple linear regression and polynomial regression, were calculated or obtained by Microsoft Exell software (2016). Results : In the present study, higher numbers of deaths related to Covid-19 pandemic were registered in many countries in Europe and America compared to other countries in Africa and Asia. The analysis by polynomial regression generated an inverted bell-shaped curve and a significant correlation between the Covid-19 death numbers and the geographic latitude of each country in our study. Higher death numbers were registered in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line. In a bell shaped curve, the latitude levels were negatively correlated to the average annual levels (last 10 years) of temperatures, sunshine hours, and UV index of each country, with the highest scores of each climate parameter being registered around the equator line, while lower levels of temperature, sunshine hours, and UV index were registered in higher latitude countries. In addition, the linear regression analysis showed that the Covid-19 death numbers registered in the 39 countries of our study were negatively correlated with the three climate factors of our study, with the temperature as the main negatively correlated factor with Covid-19 deaths. On the other hand, cancer and Alzheimer's disease scores, as well as advanced age and alcohol intake, were positively correlated to Covid-19 deaths, and inverted bell-shaped curves were obtained when expressing the above parameters against a country’s latitude. Instead, the (birth rate/mortality rate) ratio and fertility rate were negatively correlated to Covid-19 deaths, and their values gave bell-shaped curves when expressed against a country’s latitude. Conclusion : The results of the present study prove that the climate parameters and history of epidemiologic and demographic conditions as well as nutrition habits are very correlated with Covid-19 prevalence. The results of the present study prove that low levels of temperature, sunshine hours, and UV index, as well as negative epidemiologic and demographic conditions and high scores of alcohol intake may worsen Covid-19 prevalence in many countries of the northern hemisphere, and this phenomenon could explain their high Covid-19 death tolls. Keywords : Covid-19, Coronavirus, SARS-CoV-2, climate, temperature, sunshine hours, UV index, cancer, Alzheimer disease, alcohol.
Facebook
TwitterAs of January 13, 2023, there had been over 270 million confirmed cases of COVID-19 across the whole of Europe since the first confirmed case in January, 2020. Cyprus has the highest incidence of COVID-19 cases among its population in Europe at 71,853 per 100,000 people, followed by a rate of 64,449 in Austria. Slovenia has recorded the third highest rate of cases in Europe at 62,834 cases per 100,000. With almost 38.3 million confirmed cases, France has been the worst affected country in Europe, which translates into a rate of 58,945 cases per 100,000 population.
Current infection rate in Europe San Marino had the highest rate of cases per 100,000 in the past week at 336, as of January 16, 2023. Cyprus and Slovenia had seven day rates of infections at 278 and 181 respectively.
Coronavirus deaths in Europe There have been 2,169,191 recorded COVID-19 deaths in Europe since the beginning of the pandemic. Russia has the highest number of deaths recorded in a European country at over 394 thousand. Bulgaria has the highest death rate from the virus in Europe with approximately 549 deaths per 100,000 as of January 13, followed by Hungary with 496 deaths per 100,000. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAs of May 11, 2025, nearly 1.8 million people have died due COVID-19 in Latin America and the Caribbean. The country with the highest number was Brazil, reporting around 700,000 deaths. As a result of the pandemic, Brazil's GDP was forecast to decline by approximately six percent in 2020. Meanwhile, Mexico ranked second in number of deaths, with approximately 335 thousand occurrences. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F128750%2F66baee67b3e35bf9656ff816e692527e%2Fsnapshot_worldometer_july4.png?generation=1593988535797227&alt=media" alt="">
The dataset contains data about the numbers of tests, cases, deaths, serious/critical cases, active cases and recovered cases in each country for every day since April 18, and also contains the population of each country to calculate per-capita penetration of the virus
I've removed data from the "Diamond Princess" and "MS Zaandam" since they are not countries
Additionally, an auxiliray table with information about the fraction of the general population at different age groups for every country is added (taken from Wikipedia). This is specifically relevant since COVID-19 death rate is very much age dependent.
The people at "www.worldometers.info" collecting and maintaining this site really are doing very important work "https://www.worldometers.info/coronavirus/#countries">https://www.worldometers.info/coronavirus/#countries
Data about age structure for every country comes from wikipedia
It's possible to use this dataset for various purposes and analyses My goal will be to use the additional data about the number of tests performed in each country to estimate the true death and infection rates of COVID-19
Facebook
TwitterBy Valtteri Kurkela [source]
The dataset is constantly updated and synced hourly to ensure up-to-date information. With over several columns available for analysis and exploration purposes, users can extract valuable insights from this extensive dataset.
Some of the key metrics covered in the dataset include:
Vaccinations: The dataset covers total vaccinations administered worldwide as well as breakdowns of people vaccinated per hundred people and fully vaccinated individuals per hundred people.
Testing & Positivity: Information on total tests conducted along with new tests conducted per thousand people is provided. Additionally, details on positive rate (percentage of positive Covid-19 tests out of all conducted) are included.
Hospital & ICU: Data on ICU patients and hospital patients are available along with corresponding figures normalized per million people. Weekly admissions to intensive care units and hospitals are also provided.
Confirmed Cases: The number of confirmed Covid-19 cases globally is captured in both absolute numbers as well as normalized values representing cases per million people.
5.Confirmed Deaths: Total confirmed deaths due to Covid-19 worldwide are provided with figures adjusted for population size (total deaths per million).
6.Reproduction Rate: The estimated reproduction rate (R) indicates the contagiousness of the virus within a particular country or region.
7.Policy Responses: Besides healthcare-related metrics, this comprehensive dataset includes policy responses implemented by countries or regions such as lockdown measures or travel restrictions.
8.Other Variables of InterestThe data encompasses various socioeconomic factors that may influence Covid-19 outcomes including population density,membership in a continent,gross domestic product(GDP)per capita;
For demographic factors: -Age Structure : percentage populations aged 65 and older,aged (70)older,median age -Gender-specific factors: Percentage of female smokers -Lifestyle-related factors: Diabetes prevalence rate and extreme poverty rate
- Excess Mortality: The dataset further provides insights into excess mortality rates, indicating the percentage increase in deaths above the expected number based on historical data.
The dataset consists of numerous columns providing specific information for analysis, such as ISO code for countries/regions, location names,and units of measurement for different parameters.
Overall,this dataset serves as a valuable resource for researchers, analysts, and policymakers seeking to explore various aspects related to Covid-19
Introduction:
Understanding the Basic Structure:
- The dataset consists of various columns containing different data related to vaccinations, testing, hospitalization, cases, deaths, policy responses, and other key variables.
- Each row represents data for a specific country or region at a certain point in time.
Selecting Desired Columns:
- Identify the specific columns that are relevant to your analysis or research needs.
- Some important columns include population, total cases, total deaths, new cases per million people, and vaccination-related metrics.
Filtering Data:
- Use filters based on specific conditions such as date ranges or continents to focus on relevant subsets of data.
- This can help you analyze trends over time or compare data between different regions.
Analyzing Vaccination Metrics:
- Explore variables like total_vaccinations, people_vaccinated, and people_fully_vaccinated to assess vaccination coverage in different countries.
- Calculate metrics such as people_vaccinated_per_hundred or total_boosters_per_hundred for standardized comparisons across populations.
Investigating Testing Information:
- Examine columns such as total_tests, new_tests, and tests_per_case to understand testing efforts in various countries.
- Calculate rates like tests_per_case to assess testing efficiency or identify changes in testing strategies over time.
Exploring Hospitalization and ICU Data:
- Analyze variables like hosp_patients, icu_patients, and hospital_beds_per_thousand to understand healthcare systems' strain.
- Calculate rates like icu_patients_per_million or hosp_patients_per_million for cross-country comparisons.
Assessing Covid-19 Cases and Deaths:
- Analyze variables like total_cases, new_ca...
Facebook
TwitterPeru is the country with the highest mortality rate due to the coronavirus disease (COVID-19) in Latin America. As of November 13, 2023, the country registered over 672 deaths per 100,000 inhabitants. It was followed by Brazil, with around 331.5 fatal cases per 100,000 population. In total, over 1.76 million people have died due to COVID-19 in Latin America and the Caribbean.
Are these figures accurate? Although countries like Brazil already rank among the countries most affected by the coronavirus disease (COVID-19), there is still room to believe that the number of cases and deaths in Latin American countries are underreported. The main reason is the relatively low number of tests performed in the region. For example, Brazil, one of the most impacted countries in the world, has performed approximately 63.7 million tests as of December 22, 2022. This compared with over one billion tests performed in the United States, approximately 909 million tests completed in India, or around 522 million tests carried out in the United Kingdom.
Capacity to deal with the outbreak With the spread of the Omicron variant, the COVID-19 pandemic is putting health systems around the world under serious pressure. The lack of equipment to treat acute cases, for instance, is one of the problems affecting Latin American countries. In 2019, the number of ventilators in hospitals in the most affected countries ranged from 25.23 per 100,000 inhabitants in Brazil to 5.12 per 100,000 people in Peru.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset seeks to provide insights into what has changed due to policies aimed at combating COVID-19 and evaluate the changes in community activities and its relation to reduced confirmed cases of COVID-19. The reports chart movement trends, compared to an expected baseline, over time (from 2020/02/15 to 2020/02/05) by geography (across 133 countries), as well as some other stats about the country that might help explain the evolution of the disease.
Bing COVID-19 data. Available at: https://github.com/microsoft/Bing-COVID-19-Data COVID-19 Community Mobility Report. Available at: https://www.google.com/covid19/mobility/ COVID-19: Government Response Stringency Index. Available at: https://ourworldindata.org/grapher/covid-stringency-index Coronavirus (COVID-19) Testing. Available at: https://github.com/owid/covid-19-data/blob/master/public/data/testing/covid-testing-all-observations.csv Coronavirus (COVID-19) Vaccination. Available at: https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/vaccinations/vaccinations.csv List of countries and dependencies by population. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries and dependencies by population density. Available at: https://www.kaggle.com/tanuprabhu/population-by-country-2020 List of countries by Human Development Index. Available at: http://hdr.undp.org/en/data Measuring Overall Health System Performance. Available at: https://www.who.int/healthinfo/paper30.pdf?ua=1 List of countries by GDP (PPP) per capita. Available at: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD List of countries by age structure (65+). Available at: https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS
Facebook
TwitterABSTRACT Background : The Covid-19 pandemic has caused very high death tolls across the world in the last two years. Geographic latitude, climate factors, and other human related conditions such as epidemiologic and demographic history are taught to have played a role in the prevalence of Covid-19. Objective : This observational study aimed to investigate possible relations between geographic latitude-associated climate factors and Covid-19 death numbers in 29 countries. The study also aimed to investigate the relationship between geographic latitude and the history of epidemiologic (cancer, Alzheimer's disease) and demographic factors (birth rate, mortality rate, fertility rate, people aged 65 and over), as well as alcohol intake habits. And finally, the study also aimed to evaluate the relationships between epidemiologic and demographic factors, as well as alcohol intake habits with Covid-19 deaths. Methods : We sought the Covid-19 death toll in 29 countries in Europe, Africa, and the Middle East (located in both hemispheres and between the meridian lines "-15°" and "+50°"). We obtained the death numbers for Covid-19 and other geographic (latitude, longitude) and climate factors (average annual temperature, sunshine hours, and UV index) and epidemiologic and demographic parameters as well as data on alcohol intake per capita from official web pages. Based on records of epidemiologic and demographic history, and alcohol intake data, we have calculated a General Immune Capacity (GIC) score for each country. Geographic latitude and climate factors were plotted against each of Covid-19 death numbers, epidemiologic and demographic parameters, and alcohol intake per capita. Data was analysed by simple linear regression or polynomial regression. All statistical data was collected using Microsoft Excell software (2016). Results : Our observational study found higher death numbers in the higher geographic latitudes of both hemispheres, while lower scores of deaths were registered in countries located around the equator line and low latitudes. When the Covid-19 death numbers were plotted against the geographic latitude of each country, an inverted bell-shaped curve was obtained (coefficient of determination R2=0.553). In contrast, bell-shaped curves were obtained when latitude was plotted against annual average temperature (coefficient of determination R2= 0.91), average annual sunshine hours (coefficient of determination R2= 0.79) and average annual UV index (coefficient of determination R2= 0.89). In addition, plotting the latitude of each country against the General Immune Capacity score of each country gave an inverted bell-shaped curve (coefficient of determination R2=0.755). Linear regression analysis of the General Immune Capacity score of each country and its Covid-19 deaths showed a very significant negative correlation (coefficient of determination R² = 0,71, p=6.79x10-9). Linear regression analysis of the Covid-19 death number plotted against the average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations with the following coefficients of determination: (R2 = 0.69, p = 1.94x10-8), (R2 = 0.536, p = 6.31x10-6) and (R2 = 0.599, p = 8.30x10-7), respectively. Linear regression analysis of the General Immune Capacity score of each country plotted against its average annual temperature temperature and the average annual sunshine hours or the average annual UV index gave very significant negative correlations, with the following coefficients of determination: (R2 = 0.86, p = 3.63x10-13), (R2 = 0.69, p = 2.18x10-8) and (R2 = 0.77, p= 2.47x10-10), respectively. Conclusion : The results of the present study prove that at certain geographic latitudes and their three associated climate parameters are negatively correlated to Covid-19 mortality. On the other hand, our data showed that the General Immune Capacity score, which includes many human related parameters, is inversely correlated to Covid-19 mortality. Likewise, geographic location and health and demographic history were key elements in the prevalence of the Covid-19 pandemic in a given country. On the other hand, the study points to the possible protective role of UV light against Covid-19. The therapeutic potential of UV light against the Covid-19 associated with SARS-Cov-2 is discussed.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There is a correlation between average of "Coffee Consumption per capita" and average of "Covid-19 Mortality Rate" for countries with high coffee consumption per capita (the countries that has more than 5 kg per capita per year consumption).
The Details of computations and data are provided in an attached supplementary file (Excel File Format).
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.
The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows
countries-aggregated.csv
A simple and cleaned data with 5 columns with self-explanatory names.
-covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv
A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country.
-covid-contact-tracing.csv
Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing.
-covid-stringency-index.csv
The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response).
-covid-vaccination-doses-per-capita.csv
A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses).
-covid-vaccine-willingness-and-people-vaccinated-by-country.csv
Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them.
-covid_india.csv
India specific data containing the total number of active cases, recovered and deaths statewide.
-cumulative-deaths-and-cases-covid-19.csv
A cumulative data containing death and daily confirmed cases in the world.
-current-covid-patients-hospital.csv
Time series data containing a count of covid patients hospitalized in a country
-daily-tests-per-thousand-people-smoothed-7-day.csv
Daily test conducted per 1000 people in a running week average.
-face-covering-policies-covid.csv
Countries are grouped into five categories:
1->No policy
2->Recommended
3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible
4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible
5->Required outside the home at all times regardless of location or presence of other people
-full-list-cumulative-total-tests-per-thousand-map.csv
Full list of total tests conducted per 1000 people.
-income-support-covid.csv
Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary.
-internal-movement-covid.csv
Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest.
-international-travel-covid.csv
Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest.
-people-fully-vaccinated-covid.csv
Contains the count of fully vaccinated people in different countries.
-people-vaccinated-covid.csv
Contains the total count of vaccinated people in different countries.
-positive-rate-daily-smoothed.csv
Contains the positivity rate of various countries in a week running average.
-public-gathering-rules-covid.csv
Restrictions are given based on the size of public gatherings as follows:
0->No restrictions
1 ->Restrictions on very large gatherings (the limit is above 1000 people)
2 -> gatherings between 100-1000 people
3 -> gatherings between 10-100 people
4 -> gatherings of less than 10 people
-school-closures-covid.csv
School closure during Covid.
-share-people-fully-vaccinated-covid.csv
Share of people that are fully vaccinated.
-stay-at-home-covid.csv
Countries are grouped into four categories:
0->No measures
1->Recommended not to leave the house
2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WHO: COVID-2019: Number of Patients: Death: New: Australia data was reported at 0.000 Person in 24 Dec 2023. This stayed constant from the previous number of 0.000 Person for 23 Dec 2023. WHO: COVID-2019: Number of Patients: Death: New: Australia data is updated daily, averaging 0.000 Person from Jan 2020 (Median) to 24 Dec 2023, with 1430 observations. The data reached an all-time high of 1,094.000 Person in 31 Dec 2022 and a record low of -76.000 Person in 16 Jul 2023. WHO: COVID-2019: Number of Patients: Death: New: Australia data remains active status in CEIC and is reported by World Health Organization. The data is categorized under High Frequency Database’s Disease Outbreaks – Table WHO.D002: World Health Organization: Coronavirus Disease 2019 (COVID-2019): by Country and Region (Discontinued). Negative data reflects the number of retrospective adjustments made by national authorities due to reconciliation exercises, and consequently deducted to the corresponding “To-Date” series.
Facebook
TwitterAs of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.