The Vatican City, often called the Holy See, has the smallest population worldwide, with only *** inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populous country in the world, with over *** billion inhabitants.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.
The smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 0.51 percent. The highest value was in India: 17.94 percent and the lowest value was in Andorra: 0 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The United States had the largest male population of the G7 between 2010 and 2022, reaching *** million that year. On the other hand, Canada had the smallest number of male inhabitants at ** million. Moreover, the number of men living in Japan has been constantly decreasing since 2010, from ** million to ** million, following an overall decrease in the Japanese population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2024 based on 196 countries was 41.28 million. The highest value was in India: 1450.94 million and the lowest value was in Tuvalu: 0.01 million. The indicator is available from 1960 to 2024. Below is a chart for all countries where data are available.
The United States had the largest population of the G7 countries between 2000 and 2023, increasing from 282 million to 335 million. It is also the country with the third highest number of inhabitants in the world. Interestingly, Japan's population has been in decline since 2010, falling from 128 million to 124.5 million. Also Italy's population has been decreasing in recent years. Aging population Both Italy, Germany, and Japan are characterized by an increasingly aging population. In 2023, Japan had the third highest median age worldwide, while Italy and Germany had the fourth and eighth highest, respectively. Despite Germany's high median age and aging population, the number of inhabitants continue to increase because of migration. Falling fertility rates Another reason for the declining populations in Japan and Italy are falling fertility rates. Both countries were among the 20 with the lowest fertility rates in the world in 2024, meaning that women in child-bearing age have fewer children.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Refugee Population by Country or Territory of Asylum for Other Small States (SMPOPREFGOSS) from 1990 to 2023 about refugee, small, World, and population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The coastal zones of Small Island States are hotspots of human habitation and economic endeavour. In the Pacific region, as elsewhere, there are large gaps in understandings of the exposure and vulnerability of people in coastal zones. The 22 Pacific Countries and Territories (PICTs) are poorly represented in global analyses of vulnerability to seaward risks. We combine several data sources to estimate populations to zones 1, 5 and 10 km from the coastline in each of the PICTs. Regional patterns in the proximity of Pacific people to the coast are dominated by Papua New Guinea. Overall, ca. half the population of the Pacific resides within 10 km of the coast but this jumps to 97% when Papua New Guinea is excluded. A quarter of Pacific people live within 1 km of the coast, but without PNG this increases to slightly more than half. Excluding PNG, 90% of Pacific Islanders live within 5 km of the coast. All of the population in the coral atoll nations of Tokelau and Tuvalu live within a km of the ocean. Results using two global datasets, the SEDAC-CIESIN Gridded Population of the World v4 (GPWv4) and the Oak Ridge National Laboratory Landscan differed: Landscan under-dispersed population, overestimating numbers in urban centres and underestimating population in rural areas and GPWv4 over-dispersed the population. In addition to errors introduced by the allocation models of the two methods, errors were introduced as artefacts of allocating households to 1 km x 1 km grid cell data (30 arc–seconds) to polygons. The limited utility of LandScan and GPWv4 in advancing this analysis may be overcome with more spatially resolved census data and the inclusion of elevation above sea level as an important dimension of vulnerability.
Denmark has, by far, the highest population density of the Nordic countries. This is related to the fact that it is the smallest Nordic country in terms of land area. Meanwhile, Iceland, which has the smallest population of the five countries, also has the lowest population density. As the total population increased in all five countries over the past decade, the population density also increased.
In 2024, Russia had the largest population among European countries at ***** million people. The next largest countries in terms of their population size were Turkey at **** million, Germany at **** million, the United Kingdom at **** million, and France at **** million. Europe is also home to some of the world’s smallest countries, such as the microstates of Liechtenstein and San Marino, with populations of ****** and ****** respectively. Europe’s largest economies Germany was Europe’s largest economy in 2023, with a Gross Domestic Product of around *** trillion Euros, while the UK and France are the second and third largest economies, at *** trillion and *** trillion euros respectively. Prior to the mid-2000s, Europe’s fourth-largest economy, Italy, had an economy that was of a similar sized to France and the UK, before diverging growth patterns saw the UK and France become far larger economies than Italy. Moscow and Istanbul the megacities of Europe Two cities on the eastern borders of Europe were Europe’s largest in 2023. The Turkish city of Istanbul, with a population of 15.8 million, and the Russian capital, Moscow, with a population of 12.7 million. Istanbul is arguably the world’s most famous transcontinental city with territory in both Europe and Asia and has been an important center for commerce and culture for over 2,000 years. Paris was the third largest European city with a population of ** million, with London being the fourth largest at *** million.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 1.15 percent. The highest value was in Singapore: 4.86 percent and the lowest value was in Ukraine: -2.67 percent. The indicator is available from 1961 to 2023. Below is a chart for all countries where data are available.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This table shows resident population broken down into country of birth, showing data for London's largest communities (over 10,000 people) in 2004, and 2008 to 2014 from the Annual Population Survey (APS). The 2011 Census data is also provided in the spreadsheet to provide a comparison to the APS data.
The table also shows the percentage of the UK community that live in London.
The Annual Population Survey (APS) sampled around 325,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided.
All populations of fewer than 10,000 have been suppressed.
Numbers are rounded to the nearest thousand.
The APS is the only inter-censal data source that can provide estimates of the population stock by nationality. The data have a range of limitations, particularly in relation to their poor coverage of short-term migrants or recent arrivals. They also struggle to provide estimates for small migrant populations due to small sample sizes.
Information about Londoners by Country of Birth using APS data, can be found in DMAG Briefing 2008-05 http://legacy.london.gov.uk/gla/publications/factsandfigures/dmag-briefing-2008-05.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 27 countries was 187 people per square km. The highest value was in Malta: 1620 people per square km and the lowest value was in Finland: 18 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 26.11 percent. The highest value was in the Central African Republic: 49.17 percent and the lowest value was in Hong Kong: 10.7 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Refugee Population by Country or Territory of Asylum for Pacific Island Small States (SMPOPREFGPSS) from 1995 to 2023 about refugee, Pacific Islands, small, World, and population.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 49.99 percent. The highest value was in Hong Kong: 54.92 percent and the lowest value was in Qatar: 28.48 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
The Vatican City, often called the Holy See, has the smallest population worldwide, with only *** inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populous country in the world, with over *** billion inhabitants.