Facebook
TwitterNiger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.
Facebook
TwitterFor most of the past two centuries, falling birth rates have been associated with societal progress. During the demographic transition, where pre-industrial societies modernize in terms of fertility and mortality, falling death rates, especially among infants and children, are the first major change. In response, as more children survive into adulthood, women have fewer children as the need to compensate for child mortality declines. This transition has happened at different times across the world and is an ongoing process, with early industrial countries being the first to transition, and Sub-Saharan African countries being the most recent to do so. Additionally, some Asian countries (particularly China through government policy) have gone through their demographic transitions at a much faster pace than those deemed more developed. Today, in countries such as Japan, Italy, and Germany, birth rates have fallen well below death rates; this is no longer considered a positive demographic trend, as it leads to natural population decline, and may create an over-aged population that could place a burden on healthcare systems.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The infant mortality rate is defined as the number of deaths of children under one year of age, expressed per 1 000 live births. Some of the international variation in infant mortality rates is due to variations among countries in registering practices for premature infants. The United States and Canada are two countries which register a much higher proportion of babies weighing less than 500g, with low odds of survival, resulting in higher reported infant mortality. In Europe, several countries apply a minimum gestational age of 22 weeks (or a birth weight threshold of 500g) for babies to be registered as live births. This indicator is measured in terms of deaths per 1 000 live births.
This indicator is a summary measure of premature mortality, providing an explicit way of weighting deaths occurring at younger ages, which may be preventable. The calculation of Potential Years of Life Lost (PYLL) involves summing up deaths occurring at each age and multiplying this with the number of remaining years to live up to a selected age limit (age 75 is used in OECD Health Statistics). In order to assure cross-country and trend comparison, the PYLL are standardised, for each country and each year. The total OECD population in 2010 is taken as the reference population for age standardisation. This indicator is presented as a total and per gender. It is measured in years lost per 100 000 inhabitants (total), per 100 000 men and per 100 000 women, aged 0-69.
Life expectancy at birth is defined as how long, on average, a newborn can expect to live, if current death rates do not change. However, the actual age-specific death rate of any particular birth cohort cannot be known in advance. If rates are falling, actual life spans will be higher than life expectancy calculated using current death rates. Life expectancy at birth is one of the most frequently used health status indicators. Gains in life expectancy at birth can be attributed to a number of factors, including rising living standards, improved lifestyle and better education, as well as greater access to quality health services. This indicator is presented as a total and per gender and is measured in years.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
For most of human history, pregnancy and childbirth were very risky; mothers would die in at least 1 in 100 pregnancies.1
Since the average woman would have at least four or five children, the lifetime risk of dying from maternal causes would be at least 1 in 25.2 This was true everywhere.
Thankfully, that’s no longer the case. We’ve made huge strides in not only protecting infants in childbirth and the early stages of their lives, but we’ve also made it much safer for women.
But we’re not done yet. There are still huge inequalities in the risks of pregnancy across the world. Pregnant women in countries like Sierra Leone and Kenya are around 100 times more likely to die during pregnancy or childbirth than those in countries like Norway, Sweden, or Germany.3 But it doesn’t have to be this way. We could save hundreds of thousands of lives a year by closing these gaps.
I’ve compared three scenarios in the chart below to clarify these points.
First, we can see that the situation today is awful. 286,000 women died from maternal causes in 2020.4 That’s 784 deaths per day on average, or one mother dying every two minutes.5
Second, we can consider the very high maternal mortality rates of the past. Particularly good long-term data is available for Finland or Sweden, which shows that in 1750, around 900 women died per 100,000 live births.6 Since there were 135 million births in 2020, I calculate that 1.2 million women would have died from maternal causes that year if these rates hadn’t improved.7 Things are much, much better than they used to be.
Finally, things can still be much better. We know this because some countries have maternal mortality rates that are far lower than the global average. And they all used to be in a similar position to the worst-off countries today. In Europe, the maternal mortality rate was 8 deaths per 100,000 live births in 2020. That’s around 25 times lower than the global average.8 If all countries could achieve the same outcomes as Europe, 11,000 women would have died from maternal causes in 2020 — a small fraction of the 286,000 deaths that occurred.9
Providing the best conditions for women everywhere would reduce the global death toll by 275,000 maternal deaths a year.
Facebook
TwitterThis statistic shows the 20 countries* with the highest infant mortality rate in 2024. An estimated 101.3 infants per 1,000 live births died in the first year of life in Afghanistan in 2024. Infant and child mortality Infant mortality usually refers to the death of children younger than one year. Child mortality, which is often used synonymously with infant mortality, is the death of children younger than five. Among the main causes are pneumonia, diarrhea – which causes dehydration – and infections in newborns, with malnutrition also posing a severe problem. As can be seen above, most countries with a high infant mortality rate are developing countries or emerging countries, most of which are located in Africa. Good health care and hygiene are crucial in reducing child mortality; among the countries with the lowest infant mortality rate are exclusively developed countries, whose inhabitants usually have access to clean water and comprehensive health care. Access to vaccinations, antibiotics and a balanced nutrition also help reducing child mortality in these regions. In some countries, infants are killed if they turn out to be of a certain gender. India, for example, is known as a country where a lot of girls are aborted or killed right after birth, as they are considered to be too expensive for poorer families, who traditionally have to pay a costly dowry on the girl’s wedding day. Interestingly, the global mortality rate among boys is higher than that for girls, which could be due to the fact that more male infants are actually born than female ones. Other theories include a stronger immune system in girls, or more premature births among boys.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 196 countries was 18.19 births per 1000 people. The highest value was in the Central African Republic: 45.42 births per 1000 people and the lowest value was in Hong Kong: 4.4 births per 1000 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite the sharp decline in global under-5 deaths since 1990, uneven progress has been achieved across and within countries. In sub-Saharan Africa (SSA), the Millennium Development Goals (MDGs) for child mortality were met only by a few countries. Valid concerns exist as to whether the region would meet new Sustainable Development Goals (SDGs) for under-5 mortality. We therefore examine further sources of variation by assessing age patterns, trends, and forecasts of mortality rates.Methods and findingsData came from 106 nationally representative Demographic and Health Surveys (DHSs) with full birth histories from 31 SSA countries from 1990 to 2017 (a total of 524 country-years of data). We assessed the distribution of age at death through the following new demographic analyses. First, we used a direct method and full birth histories to estimate under-5 mortality rates (U5MRs) on a monthly basis. Second, we smoothed raw estimates of death rates by age and time by using a two-dimensional P-Spline approach. Third, a variant of the Lee–Carter (LC) model, designed for populations with limited data, was used to fit and forecast age profiles of mortality. We used mortality estimates from the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) to adjust, validate, and minimize the risk of bias in survival, truncation, and recall in mortality estimation. Our mortality model revealed substantive declines of death rates at every age in most countries but with notable differences in the age patterns over time. U5MRs declined from 3.3% (annual rate of reduction [ARR] 0.1%) in Lesotho to 76.4% (ARR 5.2%) in Malawi, and the pace of decline was faster on average (ARR 3.2%) than that observed for infant (IMRs) (ARR 2.7%) and neonatal (NMRs) (ARR 2.0%) mortality rates. We predict that 5 countries (Kenya, Rwanda, Senegal, Tanzania, and Uganda) are on track to achieve the under-5 sustainable development target by 2030 (25 deaths per 1,000 live births), but only Rwanda and Tanzania would meet both the neonatal (12 deaths per 1,000 live births) and under-5 targets simultaneously. Our predicted NMRs and U5MRs were in line with those estimated by the UN IGME by 2030 and 2050 (they overlapped in 27/31 countries for NMRs and 22 for U5MRs) and by the Institute for Health Metrics and Evaluation (IHME) by 2030 (26/31 and 23/31, respectively). This study has a number of limitations, including poor data quality issues that reflected bias in the report of births and deaths, preventing reliable estimates and predictions from a few countries.ConclusionsTo our knowledge, this study is the first to combine full birth histories and mortality estimates from external reliable sources to model age patterns of under-5 mortality across time in SSA. We demonstrate that countries with a rapid pace of mortality reduction (ARR ≥ 3.2%) across ages would be more likely to achieve the SDG mortality targets. However, the lower pace of neonatal mortality reduction would prevent most countries from achieving those targets: 2 countries would reach them by 2030, 13 between 2030 and 2050, and 13 after 2050.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual UK and constituent country figures for births, deaths, marriages, divorces, civil partnerships and civil partnership dissolutions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
TwitterMaternal mortality ratio is defined as the number of female deaths due to obstetric causes (ICD-10 codes: A34, O00-O95, O98-O99) while pregnant or within 42 days of termination of pregnancy. The maternal mortality ratio indicates the likelihood of a pregnant person dying of obstetric causes. It is calculated by dividing the number of deaths among birthing people attributable to obstetric causes in a calendar year by the number of live births registered for the same period and is presented as a rate per 100,000 live births. The number of live births used in the denominator approximates the population of pregnant and birthing people who are at risk. Data are not presented for geographies with number of maternal deaths less than 11.Compared to other high-income countries, women in the US are more likely to die from childbirth or problems related to pregnancy. In addition, there are persistent disparities by race and ethnicity, with Black pregnant persons experiencing a much higher rate of maternal mortality compared to White pregnant persons. Improving the quality of medical care for pregnant individuals before, during, and after pregnancy can help reduce maternal deaths.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
CONTENT
The US Census Bureau's world population clock estimated that the global population as of September 2022 was 7,922,312,800 people and was expected to reach 8 billion by mid-November of 2022. This total far exceeds the 2015 world population of 7.2 billion. The world's population continues to increase by roughly 140 people per minute, with births outweighing deaths in most countries.
Overall, however, the rate of population growth has been slowing for several decades. This slowdown is expected to continue until the rate of population growth reaches zero (an equal number of births and deaths) around 2080-2100, at a population of approximately 10.4 billion people. After this time, the population growth rate is expected to turn negative, resulting in global population decline.
Countries with more than 1 billion people China is currently the most populous country in the world, with a population estimated at more than 1.42 billion as of September 2022. Only one other country in the world boasts a population of more than 1 billion people: India, whose population is estimated to be 1.41 billion people—and rising.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMillennium Development Goal 4 calls for a reduction in the under-five mortality rate (U5MR) by two-thirds between 1990 and 2015. In 2011, estimates were published by the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) and the Institute for Health Metrics and Evaluation (IHME). The difference in the U5MR estimates produced by the two research groups was more than 10% and corresponded to more than ten deaths per 1,000 live births for 10% of all countries in 1990 and 20% of all countries in 2010, which can lead to conflicting conclusions with respect to countries' progress. To understand what caused the differences in estimates, we summarised differences in underlying data and modelling approaches used by the two groups, and analysed their effects. Methods and FindingsUN IGME and IHME estimation approaches differ with respect to the construction of databases and the pre-processing of data, trend fitting procedures, inclusion and exclusion of data series, and additional adjustment procedures. Large differences in U5MR estimates between the UN IGME and the IHME exist in countries with conflicts or civil unrest, countries with high HIV prevalence, and countries where the underlying data used to derive the estimates were different, especially if the exclusion of data series differed between the two research groups. A decomposition of the differences showed that differences in estimates due to using different data (inclusion of data series and pre-processing of data) are on average larger than the differences due to using different trend fitting methods. ConclusionsSubstantial country-specific differences between UN IGME and IHME estimates for U5MR and the number of under-five deaths exist because of various differences in data and modelling assumptions used. Often differences are illustrative of the lack of reliable data and likely to decrease as more data become available. Improved transparency on methods and data used will help to improve understanding about the drivers of the differences. Please see later in the article for the Editors' Summary.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Subjected dataset is extracted using world bank and UN websites to find population collapse according to countries and regions. The code generates data for seven indicators based on the current date and is available from Year 2000 to the year 2021.
This code is useful for research purposes, there are nine distinct CSV files associated with this code, seven of them deals with indicators, one CSV file pertaining to country groups and last CSV file is analysis for 20 years between seven indicators. Below are seven indicators extracted from the world bank and the United Nations websites.
Total Population, Population Growth, Life Expectancy at birth, Fertility Rate, Death Rate (per 1,000 people)), Birth Rate (per 1,000 people), Median Age
Population collapse is calculated using Total Population, Population Growth, Life Expectancy at birth, Fertility Rate, Death Rate, Birth Rate and Median Age, for that various criteria were applied to extract data:
The data was filtered based on several attributes, first ids and title has been extracted from the world bank data then timeframe and columns provided to extract data. This filtering process ensured that only relevant data meeting the specified criteria. For median age UN website is used and data is extracted for all countries. Median age data is not available for groups or regions; however, it could be calculated as median age data is available for all countries of the globe.
Variables: Economy, Seven Indicators Years from 2000 to 2021
For country group files, all countries are assigned according to regions, groups, by lending, by income, etc. so for this file each country is repeated as one country is member of more than one group.
Below screenshot is extracted for those countries whose population does fall in 20 years and death rate is increased while birth rate is decrease. So, for instance Ukraine population in Year 2002 was 48.2M while as per Year 2021 there population is decreased by 9% to 43.8M, similarly there death rate is increase from 15.7 to 18.5 (per 1000 people) and birth rate is decrease by 10% from 8.10 to 7.30.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2Ffeaff87cec8a478065eb06229045d7f1%2FPopulation%20Collapse.JPG?generation=1691841930935324&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn 2008, over 300,000 women died during pregnancy or childbirth, mostly in poor countries. While there are proven interventions to make childbirth safer, there is uncertainty about the best way to deliver these at large scale. In particular, there is currently a debate about whether maternal deaths are more likely to be prevented by delivering effective interventions through scaled up facilities or via community-based services. To inform this debate, we examined delivery location and attendance and the reasons women report for giving birth at home. Methodology/Principal FindingsWe conducted a secondary analysis of maternal delivery data from Demographic and Health Surveys in 48 developing countries from 2003 to the present. We stratified reported delivery locations by wealth quintile for each country and created weighted regional summaries. For sub-Saharan Africa (SSA), where death rates are highest, we conducted a subsample analysis of motivations for giving birth at home. In SSA, South Asia, and Southeast Asia, more than 70% of all births in the lowest two wealth quintiles occurred at home. In SSA, 54.1% of the richest women reported using public facilities compared with only 17.7% of the poorest women. Among home births in SSA, 56% in the poorest quintile were unattended while 41% were attended by a traditional birth attendant (TBA); 40% in the wealthiest quintile were unattended, while 33% were attended by a TBA. Seven per cent of the poorest women reported cost as a reason for not delivering in a facility, while 27% reported lack of access as a reason. The most common reason given by both the poorest and richest women for not delivering in a facility was that it was deemed “not necessary” by a household decision maker. Among the poorest women, “not necessary” was given as a reason by 68% of women whose births were unattended and by 66% of women whose births were attended. ConclusionsIn developing countries, most poor women deliver at home. This suggests that, at least in the near term, efforts to reduce maternal deaths should prioritize community-based interventions aimed at making home births safer.
Facebook
TwitterThe COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.
Facebook
TwitterIn 1985 the population and health observatory was established at Mlomp, in the region of Ziguinchor, in southern Senegal (see map). The objective was to complement the two rural population observatories then existing in the country, Bandafassi, in the south-east, and Niakhar, in the centre-west, with a third observatory in a region - the south-west of the country (Casamance) - whose history, ethnic composition and economic situation were quite different from those of the regions where the first two observatories were located. It was expected that measuring the demographic levels and trends on those three sites would provide better coverage of the demographic and epidemiological diversity of the country.
Following a population census in 1984-1985, demographic events and causes of death have been monitored yearly. During the initial census, all women were interviewed concerning the birth and survival of their children. Since 1985, yearly censuses, usually conducted in January-February, have been recording demographic data, including all births, deaths, and migrations. The completeness and accuracy of dates of birth and death are cross-checked against those of registers of the local maternity ward (_95% of all births) and dispensary (all deaths are recorded, including those occurring outside the area), respectively. The study area comprises 11 villages with approximately 8000 inhabitants, mostly Diola. Mlomp is located in the Department of Oussouye, Region of Ziguinchor (Casamance), 500 km south of Dakar.
On 1 January 2000 the Mlomp area included a population of 7,591 residents living in 11 villages. The population density was 108 people per square kilometre. The population belongs to the Diola ethnic group, and the religion is predominantly animist, with a large minority of Christians and a few Muslims. Though low, the educational level - in 2000, 55% of women aged 15-49 had been to school (for at least one year) - is definitely higher than at Bandafassi. The population also benefits from much better health infrastructure and programmes. Since 1961, the area under study has been equipped with a private health centre run by French Catholic nurses and, since 1968, a village maternity centre where most women give birth. The vast majority of the children are totally immunized and involved in a growth-monitoring programme (Pison et al.,1993; Pison et al., 2001).
The Mlomp DSS site, about 500 km from the capital, Dakar, in Senegal, lies between latitudes 12°36' and 12°32'N and longitudes 16°33' and 16°37'E, at an altitude ranging from 0 to 20 m above sea level. It is in the region of Ziguinchor, Département of Oussouye (Casamance), in southwest Senegal. It is locates 50 km west of the city of Ziguinchor and 25 kms north of the border with Guinea Bissau. It covers about half the Arrondissement of Loudia-Ouolof. The Mlomp DSS site is about 11 km × 7 km and has an area of 70 km2. Villages are households grouped in a circle with a 3-km diameter and surrounded by lands that are flooded during the rainy season and cultivated for rice. There is still no electricity.
Individual
At the census, a person was considered a member of the compound if the head of the compound declared it to be so. This definition was broad and resulted in a de jure population under study. Thereafter, a criterion was used to decide whether and when a person was to be excluded or included in the population.
A person was considered to exit from the study population through either death or emigration. Part of the population of Mlomp engages in seasonal migration, with seasonal migrants sometimes remaining 1 or 2 years outside the area before returning. A person who is absent for two successive yearly rounds, without returning in between, is regarded as having emigrated and no longer resident in the study population at the date of the second round. This definition results in the inclusion of some vital events that occur outside the study area. Some births, for example, occur to women classified in the study population but physically absent at the time of delivery, and these births are registered and included in the calculation of rates, although information on them is less accurate. Special exit criteria apply to babies born outside the study area: they are considered emigrants on the same date as their mother.
A new person enters the study population either through birth to a woman of the study population or through immigration. Information on immigrants is collected when the list of compounds of a village is checked ("Are there new compounds or new families who settled since the last visit?") or when the list of members of a compound is checked ("Are there new persons in the compound since the last visit?"). Some immigrants are villagers who left the area several years before and were excluded from the study population. Information is collected to determine in which compound they were previously registered, to match the new and old information.
Information is routinely collected on movements from one compound to another within the study area. Some categories of the population, such as older widows or orphans, frequently move for short periods of time and live in between several compounds, and they may be considered members of these compounds or of none. As a consequence, their movements are not always declared.
Event history data
One round of data collection took place annually, except in 1987 and 2008.
No samplaing is done
None
Proxy Respondent [proxy]
List of questionnaires: - Household book (used to register informations needed to define outmigrations) - Delivery questionnaire (used to register information of dispensaire ol mlomp) - New household questionnaire - New member questionnaire - Marriage and divorce questionnaire - Birth and marital histories questionnaire (for a new member) - Death questionnaire (used to register the date of death)
On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.
No imputations were done on the resulting micro data set, except for:
a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an out-migration event (OMG)
In the case of the village that was added (enumerated) in 2006, some individuals may have outmigrated from the original surveillance area and setlled in the the new village prior to the first enumeration. Where the records of such individuals have been linked, and indivdiual can legitmately have and outmigration event (OMG) forllowed by and enumeration event (ENU). In a few cases a homestead exit event (EXT) was followed by an enumeration event in these cases. In these instances the EXT events were changed to an out-migration event (OMG).
On an average the response rate is about 99% over the years for each round.
Not applicable
CenterId Metric Table QMetric Illegal Legal Total Metric Rundate
SN012 MicroDataCleaned Starts 18756 2017-05-19 00:00
SN012 MicroDataCleaned Transitions 0 45136 45136 0 2017-05-19 00:00
SN012 MicroDataCleaned Ends 18756 2017-05-19 00:00
SN012 MicroDataCleaned SexValues 38 45098 45136 0 2017-05-19 00:00
SN012 MicroDataCleaned DoBValues 204 44932 45136 0 2017-05-19 00:00
Facebook
TwitterUNICEF's country profile for United States, including under-five mortality rates, child health, education and sanitation data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn September 2013, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) published an update of the estimates of the under-five mortality rate (U5MR) and under-five deaths for all countries. Compared to the UN IGME estimates published in 2012, updated data inputs and a new method for estimating the U5MR were used.MethodsWe summarize the new U5MR estimation method, which is a Bayesian B-spline Bias-reduction model, and highlight differences with the previously used method. Differences in UN IGME U5MR estimates as published in 2012 and those published in 2013 are presented and decomposed into differences due to the updated database and differences due to the new estimation method to explain and motivate changes in estimates.FindingsCompared to the previously used method, the new UN IGME estimation method is based on a different trend fitting method that can track (recent) changes in U5MR more closely. The new method provides U5MR estimates that account for data quality issues. Resulting differences in U5MR point estimates between the UN IGME 2012 and 2013 publications are small for the majority of countries but greater than 10 deaths per 1,000 live births for 33 countries in 2011 and 19 countries in 1990. These differences can be explained by the updated database used, the curve fitting method as well as accounting for data quality issues. Changes in the number of deaths were less than 10% on the global level and for the majority of MDG regions.ConclusionsThe 2013 UN IGME estimates provide the most recent assessment of levels and trends in U5MR based on all available data and an improved estimation method that allows for closer-to-real-time monitoring of changes in the U5MR and takes account of data quality issues.
Facebook
TwitterIn 2010, cancer deaths accounted for more than 15% of all deaths worldwide, and this fraction is estimated to rise in the coming years. Increased cancer mortality has been observed in immigrant populations, but a comprehensive analysis by country of birth has not been conducted. We followed all individuals living in Sweden between 1961 and 2009 (7,109,327 men and 6,958,714 women), and calculated crude cancer mortality rates and age-standardized rates (ASRs) using the world population for standardization. We observed a downward trend in all-site ASRs over the past two decades in men regardless of country of birth but no such trend was found in women. All-site cancer mortality increased with decreasing levels of education regardless of sex and country of birth (p for trend <0.001). We also compared cancer mortality rates among foreign-born (13.9%) and Sweden-born (86.1%) individuals and determined the effect of education level and sex estimated by mortality rate ratios (MRRs) using multivariable Poisson regression. All-site cancer mortality was slightly higher among foreign-born than Sweden-born men (MRR = 1.05, 95% confidence interval 1.04–1.07), but similar mortality risks was found among foreign-born and Sweden-born women. Men born in Angola, Laos, and Cambodia had the highest cancer mortality risk. Women born in all countries except Iceland, Denmark, and Mexico had a similar or smaller risk than women born in Sweden. Cancer-specific mortality analysis showed an increased risk for cervical and lung cancer in both sexes but a decreased risk for colon, breast, and prostate cancer mortality among foreign-born compared with Sweden-born individuals. Further studies are required to fully understand the causes of the observed inequalities in mortality across levels of education and countries of birth.
Facebook
TwitterNiger had the highest birth rate in the world in 2024, with a birth rate of 46.6 births per 1,000 inhabitants. Angola, Benin, Mali, and Uganda followed. Except for Afghanistan, all 20 countries with the highest birth rates in the world were located in Sub-Saharan Africa. High infant mortality The reasons behind the high birth rates in many Sub-Saharan African countries are manyfold, but a major reason is that infant mortality remains high on the continent, despite decreasing steadily over the past decades, resulting in high birth rates to counter death rates. Moreover, many nations in Sub-Saharan Africa are highly reliant on small-scale farming, meaning that more hands are of importance. Additionally, polygamy is not uncommon in the region, and having many children is often seen as a symbol of status. Fastest-growing populations As the high fertility rates coincide with decreasing death rates, countries in Sub-Saharan Africa have the highest population growth rates in the world. As a result, Africa's population is forecast to increase from 1.4 billion in 2022 to over 3.9 billion by 2100.