100+ datasets found
  1. Countries with the largest population 2025

    • statista.com
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

  2. Highest population density by country 2024

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  3. G

    Percent of world population by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Mar 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Percent of world population by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/population_share/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Mar 21, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 0.51 percent. The highest value was in India: 17.94 percent and the lowest value was in Andorra: 0 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  4. Countries with the largest percentage of the total population over 65 years...

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest percentage of the total population over 65 years 2024 [Dataset]. https://www.statista.com/statistics/264729/countries-with-the-largest-percentage-of-total-population-over-65-years/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In 2024, Monaco was the country with the highest percentage of the total population that was over the age of 65, with ** percent. Japan had the second highest with ** percent, while Portugal and Bulgaria followed in third with ***percent.

  5. World Population

    • kaggle.com
    Updated Dec 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    khaIid (2021). World Population [Dataset]. https://www.kaggle.com/datasets/khaiid/world-population/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 29, 2021
    Dataset provided by
    Kaggle
    Authors
    khaIid
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    World
    Description

    Content

    The dataset has 6 columns described as following:

    Rank: Country rank by population

    Country: Country name

    Region: Country region

    Population: Country population

    Percentage: Percentage of population worldwide

    Date: Date when population was measured

    Questions to be answered

    What is the population of each region ? Which country has the most population in each region ? What is the percentage of the first 10 countries ?

  6. World Population Dataset

    • kaggle.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amit Kumar Sahu (2022). World Population Dataset [Dataset]. https://www.kaggle.com/datasets/asahu40/world-population-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amit Kumar Sahu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This is a Dataset of the World Population Consisting of Each and Every Country. I have attempted to analyze the same data to bring some insights out of it. The dataset consists of 234 rows and 17 columns. I will analyze the same data and bring the below pieces of information regarding the same.

    1. Continent Population Characteristics Analysis.
    2. Analysis of Countries.
      • Top 10 Most Populated and Least Populated Countries
      • Top 10 Largest and Smallest Countries as per Area
      • Population Growth From 1970 to 2020 (50 Years)
    3. Countries Represent % Of World Population.
      • Countries that represent below 0.1% of the World Population.
      • Countries that represent above 2% of the world Population
      • Top 10 Over Populated Countries based on Density Per Sq KM.
      • Top 10 Least Populated Countries based on Density Per Sq KM.
  7. Countries with the highest population growth rate 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  8. G

    Human rights and rule of law index by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Human rights and rule of law index by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/human_rights_rule_law_index/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    May 25, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2007 - Dec 31, 2024
    Area covered
    World
    Description

    The average for 2024 based on 175 countries was 5.42 index points. The highest value was in Iran: 10 index points and the lowest value was in Iceland: 0.2 index points. The indicator is available from 2007 to 2024. Below is a chart for all countries where data are available.

  9. G

    Population ages 65 and above by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Population ages 65 and above by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/elderly_population/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Nov 18, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 10.17 percent. The highest value was in Monaco: 36.36 percent and the lowest value was in Qatar: 1.57 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  10. g

    WORLD POPULATION

    • global-relocate.com
    csv
    Updated Dec 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Relocate (2024). WORLD POPULATION [Dataset]. https://global-relocate.com/rankings/world-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 22, 2024
    Dataset provided by
    Global Relocate
    Area covered
    World
    Description

    The population rating shows how many people currently live in a particular country. This rating helps not only to compare countries by the number of inhabitants and population density, but also to predict the further dynamics of growth, stagnation and population decline.

  11. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  12. Countries with the highest number of internet users 2025

    • statista.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest number of internet users 2025 [Dataset]. https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    World
    Description

    As of February 2025, China ranked first among the countries with the most internet users worldwide. The world's most populated country had 1.11 billion internet users, more than triple the third-ranked United States, with just around 322 million internet users. Overall, all BRIC markets had over two billion internet users, accounting for four of the ten countries with more than 100 million internet users. Worldwide internet usage As of October 2024, there were more than five billion internet users worldwide. There are, however, stark differences in user distribution according to region. Eastern Asia is home to 1.34 billion internet users, while African and Middle Eastern regions had lower user figures. Moreover, the urban areas showed a higher percentage of internet access than rural areas. Internet use in China China ranks first in the list of countries with the most internet users. Due to its ongoing and fast-paced economic development and a cultural inclination towards technology, more than a billion of the estimated 1.4 billion population in China are online. As of the third quarter of 2023, around 87 percent of Chinese internet users stated using WeChat, the most popular social network in the country. On average, Chinese internet users spent five hours and 33 minutes online daily.

  13. T

    POPULATION by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=america
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  14. G

    Hospital beds per 1,000 people by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2021). Hospital beds per 1,000 people by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/hospital_beds_per_1000_people/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Jan 23, 2021
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2021
    Area covered
    World
    Description

    The average for 2020 based on 36 countries was 4.44 hospital beds. The highest value was in South Korea: 12.65 hospital beds and the lowest value was in Mexico: 0.99 hospital beds. The indicator is available from 1960 to 2021. Below is a chart for all countries where data are available.

  15. g

    State of World Liberty Project, World Freedom Index, Worldwide by Country,...

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). State of World Liberty Project, World Freedom Index, Worldwide by Country, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    State of World Liberty Project
    data
    Description

    This is the World Freedom index, By the State of World Liberty Project. It ranks various countries by various forms of freedom and created an index to see which countries had the most freedom. USA finished 8th, with Estonia in 1st place and North Korea having the least freedom. Source URL: http://www.stateofworldliberty.org/report/rankings.html This Dataset has a ranking for the countries, just to be clear, when you map out the rankings of countries, the highest ranked countries will not be the brightest on the map. Estonia is Ranked #1, but the value of 1 is lower than the value assigned to North Korea (158). so just be aware of that. In short, for mapping, use the Scores not the Ranks.

  16. G

    Percent female population by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Percent female population by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/percent_female_population/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Nov 14, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 49.99 percent. The highest value was in Hong Kong: 54.92 percent and the lowest value was in Qatar: 28.48 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  17. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  18. D

    Who fears and who welcomes population decline? [Dataset]

    • dataverse.nl
    application/x-stata +2
    Updated Feb 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    H.P Van Dalen; K. Henkens; H.P Van Dalen; K. Henkens (2023). Who fears and who welcomes population decline? [Dataset] [Dataset]. http://doi.org/10.34894/XAZOO7
    Explore at:
    doc(413696), application/x-stata(396361), docx(40530), doc(41984)Available download formats
    Dataset updated
    Feb 13, 2023
    Dataset provided by
    DataverseNL
    Authors
    H.P Van Dalen; K. Henkens; H.P Van Dalen; K. Henkens
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    European countries are experiencing population decline and the tacit assumption in most analyses is that the decline may have detrimental welfare effects. In this paper we use a survey among the population in the Netherlands to discover whether population decline is always met with fear. A number of results stand out: population size preferences differ by geographic proximity: at a global level the majority of respondents favors a (global) population decline, but closer to home one supports a stationary population. Population decline is clearly not always met with fear: 31 percent would like the population to decline at the national level and they generally perceive decline to be accompanied by immaterial welfare gains (improvement environment) as well as material welfare losses (tax increases, economic stagnation). In addition to these driving forces it appears that the attitude towards immigrants is a very strong determinant at all geographical levels: immigrants seem to be a stronger fear factor than population decline.

  19. COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  20. G

    Mobile phone subscribers, per 100 people by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Sep 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Mobile phone subscribers, per 100 people by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Mobile_phone_subscribers_per_100_people/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 156 countries was 120.02 subscribers per 100 people. The highest value was in Hong Kong: 319.49 subscribers per 100 people and the lowest value was in Papua New Guinea: 34.06 subscribers per 100 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
Organization logo

Countries with the largest population 2025

Explore at:
46 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 5, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.

Search
Clear search
Close search
Google apps
Main menu