100+ datasets found
  1. Largest countries and territories in the world by area

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest countries and territories in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Russia is the largest country in the world by far, with a total area of just over 17 million square kilometers. After Antarctica, the next three countries are Canada, the U.S., and China; all between 9.5 and 10 million square kilometers. The figures given include internal water surface area (such as lakes or rivers) - if the figures were for land surface only then China would be the second largest country in the world, the U.S. third, and Canada (the country with more lakes than the rest of the world combined) fourth. Russia Russia has a population of around 145 million people, putting it in the top ten most populous countries in the world, and making it the most populous in Europe. However, it's vast size gives it a very low population density, ranked among the bottom 20 countries. Most of Russia's population is concentrated in the west, with around 75 percent of the population living in the European part, while around 75 percent of Russia's territory is in Asia; the Ural Mountains are considered the continental border. Elsewhere in the world Beyond Russia, the world's largest countries all have distinctive topographies and climates setting them apart. The United States, for example, has climates ranging from tundra in Alaska to tropical forests in Florida, with various mountain ranges, deserts, plains, and forests in between. Populations in these countries are often concentrated in urban areas, and are not evenly distributed across the country. For example, around 85 percent of Canada's population lives within 100 miles of the U.S. border; around 95 percent of China lives east of the Heihe–Tengchong Line that splits the country; and the majority of populations in large countries such as Australia or Brazil live near the coast.

  2. G

    Land area by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Oct 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Land area by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/land_area/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Oct 16, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 656095 sq. km. The highest value was in Russia: 16376870 sq. km and the lowest value was in Monaco: 2 sq. km. The indicator is available from 1961 to 2023. Below is a chart for all countries where data are available.

  3. Largest countries in South America, by land area

    • statista.com
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Largest countries in South America, by land area [Dataset]. https://www.statista.com/statistics/992398/largest-countries-area-south-america/
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South America, Latin America, Americas
    Description

    The statistic shows the largest countries in South America, based on land area. Brazil is the largest country by far, with a total area of over 8.5 million square kilometers, followed by Argentina, with almost 2.8 million square kilometers.

  4. Largest countries in Central America, by land area

    • statista.com
    Updated Apr 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Largest countries in Central America, by land area [Dataset]. https://www.statista.com/statistics/992382/largest-countries-area-central-america/
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America, Americas
    Description

    The statistic shows the largest countries in Central America, based on land area. Nicaragua is the largest country in the subregion, with a total area of over 130 thousand square kilometers, followed by Honduras, with more than 112 thousand square kilometers.

  5. Smallest countries worldwide 2020, by land area

    • statista.com
    Updated Oct 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Smallest countries worldwide 2020, by land area [Dataset]. https://www.statista.com/statistics/1181994/the-worlds-smallest-countries/
    Explore at:
    Dataset updated
    Oct 16, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.

  6. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Authors
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  7. Country's Actual Area Dataset

    • kaggle.com
    zip
    Updated Dec 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpit Singh (2024). Country's Actual Area Dataset [Dataset]. https://www.kaggle.com/arpitsinghaiml/countrys-actual-area-dataset
    Explore at:
    zip(4583 bytes)Available download formats
    Dataset updated
    Dec 14, 2024
    Authors
    Arpit Singh
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset provides a comprehensive list of countries and their respective land and water areas. It includes a detailed comparison of country sizes as depicted on the Mercator projection versus their true geographic proportions. This dataset is inspired by the limitations of traditional map projections and aims to provide a more accurate representation of global land masses.

    File Information: - true-size-of-countries-2024.csv: A CSV file containing a list of countries, their land area, water area, total area, and percentage of water area.

  8. r

    Country Size Comparison Data

    • realcountrysizes.com
    Updated Mar 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Real Country Sizes (2025). Country Size Comparison Data [Dataset]. https://realcountrysizes.com/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset authored and provided by
    Real Country Sizes
    Variables measured
    Relative Size Comparison, Country Area in Square Miles, Country Area in Square Kilometers, Mercator Projection Distortion Percentage
    Description

    Comprehensive dataset of country sizes and common geographic comparisons including USA vs China, USA vs UK, the real size of Africa, and many other popular country size comparisons.

  9. Nordic countries by area

    • statista.com
    Updated Apr 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Nordic countries by area [Dataset]. https://www.statista.com/statistics/1301264/countries-nordics-area/
    Explore at:
    Dataset updated
    Apr 7, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Sweden, Finland, Denmark, Norway
    Description

    With 450,295 square kilometers, Sweden is the largest Nordic country by area size, followed by Finland and Norway. This makes it the fifth largest country in Europe. Meanwhile, Denmark is the smallest of the five Nordic countries with only 43,094 square kilometers, however, the Danish autonomous region of Greenland is significantly larger than any of the Nordic countries, and is almost double the size of the other five combined.

    Population

    Sweden is also the Nordic country with the largest population. 10.45 million people live in the country. Denmark, Finland, and Norway all have between five and six million inhabitants, whereas only 370,000 people live in Iceland. Meanwhile, Denmark has the highest population density of the five countries. Greenland is the most sparsely populated permanently-inhabited country in the world, followed by the regions of Svalbard and Jan Mayen.

    Geography

    The five Nordic countries vary geographically. While Denmark is mostly flat, its highest point only stretching around 170 meters above sea level, Norway's highest peak is nearly 2,500 meters high. Moreover, Finland is known for its many lakes and is often called the land of a thousand lakes, whereas Iceland is famous for its volcanoes.

  10. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  11. d

    Gridded Population of the World, Version 4 (GPWv4): National Identifier...

    • search.dataone.org
    • dataverse.harvard.edu
    • +2more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University (2025). Gridded Population of the World, Version 4 (GPWv4): National Identifier Grid, Revision 11 [Dataset]. http://doi.org/10.7910/DVN/UTN7K2
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University
    Time period covered
    Feb 28, 2019
    Description

    The Gridded Population of the World, Version 4 (GPWv4): National Identifier Grid, Revision 11 is a raster representation of nation-states in GPWv4 for use in aggregating population data. This data set was produced from the input census units which were used to create a raster surface where pixels that cover the same census data source (most often a country or territory) have the same value. Note that these data are not official representations of country boundaries; rather, they represent the area covered by the input data. In cases where multiple countries overlapped a given pixel (e.g. on national borders), the pixels were assigned the country code of the input data set which made up the majority of the land area. The data file was produced as a global raster at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions. Each level of aggregation results in the loss of one or more countries with areas smaller than the cell size of the final raster. Rasters of all resolutions were also converted to polygon shapefiles. To provide a raster representation of nation-states in GPWv4 for use in aggregating population data.

  12. world Population Prospects (2024)

    • kaggle.com
    zip
    Updated Jul 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). world Population Prospects (2024) [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/world-population-prospects-2024
    Explore at:
    zip(218613 bytes)Available download formats
    Dataset updated
    Jul 24, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    this graph was created in OurDataWorld:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">

    Population growth is one of the most important topics we cover at Our World in Data.

    For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.

    But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.

    On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.

    One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.

    This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.

    As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.

    Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.

  13. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Ghana Centre for Democratic Development (CDD-Ghana)
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Africa, Lesotho, Namibia, Botswana, Zambia, Zimbabwe, South Africa, Malawi
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  14. t

    Percent of World Population Compared to Africa

    • theafricangourmet.com
    Updated Sep 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Percent of World Population Compared to Africa [Dataset]. https://www.theafricangourmet.com/2020/08/percent-world-population-compared-Africa.html
    Explore at:
    Dataset updated
    Sep 1, 2020
    Area covered
    Africa, World
    Description

    Top five largest countries of Africa by land size are Algeria, Congo Democratic Republic of the, Sudan, Libya and Chad but the top five largest populations in Africa are in Nigeria, Ethiopia, Egypt, Democratic Republic of the Congo and Tanzania.

  15. d

    Gridded Population of the World, Version 3 (GPWv3): Population Count Grid,...

    • search.dataone.org
    • dataverse.harvard.edu
    • +4more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University, United Nations Food and Agriculture Programme - FAO, and Centro Internacional de Agricultura Tropical - CIAT (2025). Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates [Dataset]. http://doi.org/10.7910/DVN/YS1DJO
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University, United Nations Food and Agriculture Programme - FAO, and Centro Internacional de Agricultura Tropical - CIAT
    Time period covered
    Dec 31, 2005
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Count Grid, Future Estimates consists of estimates of human population for the years 2005, 2010, and 2015 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative units, is used to assign population values to grid cells. The population counts that the grids are derived from are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics. All of the grids have been adjusted to match United Nations national level population estimates. The population count grids contain estimates of the number of persons per grid cell. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT). To provide a time series of raster data on population projected to the year 2015 to facilitate data integration.

  16. Land Cover 2050 - Country

    • africageoportal.com
    • republiqueducongo.africageoportal.com
    Updated May 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Country [Dataset]. https://www.africageoportal.com/datasets/3cce97cba8394287bcaf60f7618a5500
    Explore at:
    Dataset updated
    May 14, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Retirement Notice: This item is in mature support as of June 2026 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create these predictions.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: GlobalCell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.”This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.What these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegionsSlopeTemperature Qualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture Were small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican City Index to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover.1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  17. Land area APAC 2018, by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Land area APAC 2018, by country [Dataset]. https://www.statista.com/statistics/639303/land-area-asia-pacific-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    APAC
    Description

    This statistic shows the land area in square kilometers in the Asia-Pacific region in 2018, by country. In 2018, the land area of Australia comprised about *********** square kilometers.

  18. 2024 Population Projections by Country

    • kaggle.com
    zip
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MJDSkaggle (2024). 2024 Population Projections by Country [Dataset]. https://www.kaggle.com/datasets/mjdskaggle/2024-population-projections-by-country/code
    Explore at:
    zip(16663 bytes)Available download formats
    Dataset updated
    Jun 5, 2024
    Authors
    MJDSkaggle
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    2024 population count by country and land area size of the country. Also included: Historical populations for 1980, 2000, and 2010. United Nations population estimates for 2023 and 2024. United Nations population projections for 2030 and 2050. Whether or not the country is a member of the United Nations. Population change from 2023-2024. Growth rate from 2023-2024. Percentage of 2024 population. 2024 Population Density.

  19. G

    Forest area, percent by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 22, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Forest area, percent by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/forest_area/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Apr 22, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1990 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 194 countries was 31.6 percent. The highest value was in Suriname: 94.4 percent and the lowest value was in Egypt: 0 percent. The indicator is available from 1990 to 2023. Below is a chart for all countries where data are available.

  20. Land Cover 2050 - Global

    • giscommons-countyplanning.opendata.arcgis.com
    • cacgeoportal.com
    • +11more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://giscommons-countyplanning.opendata.arcgis.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Largest countries and territories in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
Organization logo

Largest countries and territories in the world by area

Explore at:
23 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 19, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

Russia is the largest country in the world by far, with a total area of just over 17 million square kilometers. After Antarctica, the next three countries are Canada, the U.S., and China; all between 9.5 and 10 million square kilometers. The figures given include internal water surface area (such as lakes or rivers) - if the figures were for land surface only then China would be the second largest country in the world, the U.S. third, and Canada (the country with more lakes than the rest of the world combined) fourth. Russia Russia has a population of around 145 million people, putting it in the top ten most populous countries in the world, and making it the most populous in Europe. However, it's vast size gives it a very low population density, ranked among the bottom 20 countries. Most of Russia's population is concentrated in the west, with around 75 percent of the population living in the European part, while around 75 percent of Russia's territory is in Asia; the Ural Mountains are considered the continental border. Elsewhere in the world Beyond Russia, the world's largest countries all have distinctive topographies and climates setting them apart. The United States, for example, has climates ranging from tundra in Alaska to tropical forests in Florida, with various mountain ranges, deserts, plains, and forests in between. Populations in these countries are often concentrated in urban areas, and are not evenly distributed across the country. For example, around 85 percent of Canada's population lives within 100 miles of the U.S. border; around 95 percent of China lives east of the Heihe–Tengchong Line that splits the country; and the majority of populations in large countries such as Australia or Brazil live near the coast.

Search
Clear search
Close search
Google apps
Main menu