100+ datasets found
  1. Largest countries and territories in the world by area

    • statista.com
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest countries and territories in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Russia is the largest country in the world by far, with a total area of just over 17 million square kilometers. After Antarctica, the next three countries are Canada, the U.S., and China; all between 9.5 and 10 million square kilometers. The figures given include internal water surface area (such as lakes or rivers) - if the figures were for land surface only then China would be the second largest country in the world, the U.S. third, and Canada (the country with more lakes than the rest of the world combined) fourth. Russia Russia has a population of around 145 million people, putting it in the top ten most populous countries in the world, and making it the most populous in Europe. However, it's vast size gives it a very low population density, ranked among the bottom 20 countries. Most of Russia's population is concentrated in the west, with around 75 percent of the population living in the European part, while around 75 percent of Russia's territory is in Asia; the Ural Mountains are considered the continental border. Elsewhere in the world Beyond Russia, the world's largest countries all have distinctive topographies and climates setting them apart. The United States, for example, has climates ranging from tundra in Alaska to tropical forests in Florida, with various mountain ranges, deserts, plains, and forests in between. Populations in these countries are often concentrated in urban areas, and are not evenly distributed across the country. For example, around 85 percent of Canada's population lives within 100 miles of the U.S. border; around 95 percent of China lives east of the Heihe–Tengchong Line that splits the country; and the majority of populations in large countries such as Australia or Brazil live near the coast.

  2. G

    Land area by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Oct 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Land area by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/land_area/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Oct 16, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2022
    Area covered
    World, World
    Description

    The average for 2021 based on 196 countries was 656013 sq. km. The highest value was in Russia: 16376870 sq. km and the lowest value was in Monaco: 2 sq. km. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.

  3. Largest countries in South America, by land area

    • statista.com
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Largest countries in South America, by land area [Dataset]. https://www.statista.com/statistics/992398/largest-countries-area-south-america/
    Explore at:
    Dataset updated
    Feb 8, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Americas, South America
    Description

    The statistic shows the largest countries in South America, based on land area. Brazil is the largest country by far, with a total area of over 8.5 million square kilometers, followed by Argentina, with almost 2.8 million square kilometers.

  4. Nordic countries by area

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Nordic countries by area [Dataset]. https://www.statista.com/statistics/1301264/countries-nordics-area/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Denmark, Finland, Norway, Iceland, Sweden
    Description

    With 450,295 square kilometers, Sweden is the largest Nordic country by area size, followed by Finland and Norway. This makes it the fifth largest country in Europe. Meanwhile, Denmark is the smallest of the five Nordic countries with only 43,094 square kilometers, however, the Danish autonomous region of Greenland is significantly larger than any of the Nordic countries, and is almost double the size of the other five combined.

    Population

    Sweden is also the Nordic country with the largest population. 10.45 million people live in the country. Denmark, Finland, and Norway all have between five and six million inhabitants, whereas only 370,000 people live in Iceland. Meanwhile, Denmark has the highest population density of the five countries. Greenland is the most sparsely populated permanently-inhabited country in the world, followed by the regions of Svalbard and Jan Mayen.

    Geography

    The five Nordic countries vary geographically. While Denmark is mostly flat, its highest point only stretching around 170 meters above sea level, Norway's highest peak is nearly 2,500 meters high. Moreover, Finland is known for its many lakes and is often called the land of a thousand lakes, whereas Iceland is famous for its volcanoes.

  5. Smallest countries worldwide 2020, by land area

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Smallest countries worldwide 2020, by land area [Dataset]. https://www.statista.com/statistics/1181994/the-worlds-smallest-countries/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The smallest country in the world is Vatican City, with a landmass of just **** square kilometers (0.19 square miles). Vatican City is an independent state surrounded by Rome. Vatican City is not the only small country located inside Italy. San Marino is another microstate, with a land area of ** square kilometers, making it the fifth-smallest country in the world. Many of these small nations have equally small populations, typically less than ************** inhabitants. However, the population of Singapore is almost *** million, and it is the twentieth smallest country in the world with a land area of *** square kilometers. In comparison, Jamaica is almost eight times larger than Singapore, but has half the population.

  6. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  7. G

    Land area in the European union | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Oct 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Land area in the European union | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/land_area/European-union/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Oct 16, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2022
    Area covered
    Europe, European Union, World
    Description

    The average for 2021 based on 27 countries was 148029 sq. km. The highest value was in France: 547557 sq. km and the lowest value was in Malta: 320 sq. km. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.

  8. Largest countries in Central America, by land area

    • statista.com
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Largest countries in Central America, by land area [Dataset]. https://www.statista.com/statistics/992382/largest-countries-area-central-america/
    Explore at:
    Dataset updated
    Feb 8, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America, Americas
    Description

    The statistic shows the largest countries in Central America, based on land area. Nicaragua is the largest country in the subregion, with a total area of over 130 thousand square kilometers, followed by Honduras, with more than 112 thousand square kilometers.

  9. Largest countries in Africa 2020, by area

    • statista.com
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest countries in Africa 2020, by area [Dataset]. https://www.statista.com/statistics/1207844/largest-countries-in-africa-by-area/
    Explore at:
    Dataset updated
    Jun 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    Africa
    Description

    Algeria is the biggest country in Africa, with an area exceeding 2.38 million square kilometers as of 2020. The Democratic Republic of the Congo and Sudan follow with a total area of around 2.34 million and 1.88 million square kilometers, respectively. On the other hand, Seychelles is the smallest country on the continent, with an area of only 460 square kilometers. Overall, Africa’s total area exceeds 30 million square kilometers, being the second largest continent in the world after Asia. Nigeria and Ethiopia lead the ranking of the most populated countries in Africa.

    How have the African countries been formed?

    The political geography of Africa has been influenced by its colonial history. Between the 19th and 20th Century, the European colonizers have divided up Africa. The partition of the territories was merely driven by strategic purposes: Borders between countries were artificially created in the absence of a geographic border. Following the decolonization, most countries gained their independence in the second half of the 1900s. The newest country in Africa is South Sudan, which became independent in 2011.

    Africa's physical geography

    Geographically, the African continent is mostly constituted by plains and tablelands. Inner plateaus are prevalent in the sub-Saharan region. In the center-north, the arid Sahara Desert extends for around nine million square kilometers, being the largest subtropical desert in the world. The continent also has some of the biggest water basins worldwide, namely the Nile, Congo, and Niger rivers. East Africa has, instead, the highest summit on the continent, the Kilimanjaro. Peaking at 5,895 meters, the mountain dominates Tanzania’s landscape and attracts thousands of climbers each year.

  10. n

    Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier...

    • cmr.earthdata.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +4more
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid [Dataset]. http://doi.org/10.7927/H40K26HS
    Explore at:
    Dataset updated
    Oct 22, 2024
    Time period covered
    Jul 1, 2010
    Area covered
    Description

    The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): National Identifier Grid is derived from the land area grid to create a raster surface where pixels (cells) that cover the same nation or territory have the same value. The countries and territories are not official representations of country boundaries; rather they represent the area covered by the statistical data as provided. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).

  11. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Malawi, Zimbabwe, Zambia, Lesotho, Namibia, Africa, Botswana, South Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  12. Land Cover 2050 - Country

    • pacificgeoportal.com
    • africageoportal.com
    • +11more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Country [Dataset]. https://www.pacificgeoportal.com/datasets/afeaa714dd8b4553bc92898002abf145
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays a single global land cover map that is modeled by country for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  13. Land area APAC 2018, by country

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Land area APAC 2018, by country [Dataset]. https://www.statista.com/statistics/639303/land-area-asia-pacific-by-country/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    Asia–Pacific
    Description

    This statistic shows the land area in square kilometers in the Asia-Pacific region in 2018, by country. In 2018, the land area of Australia comprised about *********** square kilometers.

  14. A

    ‘Countries of the World’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Countries of the World’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-countries-of-the-world-00c4/2cca4656/?iid=005-843&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Analysis of ‘Countries of the World’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/fernandol/countries-of-the-world on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    World fact sheet, fun to link with other datasets.

    Content

    Information on population, region, area size, infant mortality and more.

    Acknowledgements

    Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission."
    https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html

    Inspiration

    When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.

    --- Original source retains full ownership of the source dataset ---

  15. Afrobarometer Survey 2025 - Cameroon

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Centre for Democratic Development (CDD) (2025). Afrobarometer Survey 2025 - Cameroon [Dataset]. https://microdata.worldbank.org/index.php/catalog/6761
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    University of Nairobi in Kenya
    Institute for Development Studies (IDS)
    Time period covered
    2025
    Area covered
    Cameroon
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, Round 7 (2016-2018) 34 countries, Round 8 (2019-2021), and Round 9 (2021-2023). The survey covers about 40 countries in Round 10.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of Cameroon who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    Cameroon - Sample size: 1,200 - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and urban-rural location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual - Weighting: Weighted to account for individual selection probabilities - Sampling frame: 2005 population census

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 10 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    Response rate

    Response rate was 52.8%.

    Sampling error estimates

    The sample size yields country-level results with a margin of error of +/-3 percentage points at a 95% confidence level.

  16. Output Area (2021) to Country (December 2021) Exact Fit Lookup in EW

    • open-geography-portalx-ons.hub.arcgis.com
    Updated Aug 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Output Area (2021) to Country (December 2021) Exact Fit Lookup in EW [Dataset]. https://open-geography-portalx-ons.hub.arcgis.com/items/f5d353a7882846ea9fe86f3e224c33ef
    Explore at:
    Dataset updated
    Aug 15, 2022
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences

    Area covered
    Description

    A lookup between 2021 Output Areas (OA) and countries as at 31 December 2021 in England and Wales. (File Size 6.4 MB).Field Names – OA21CD, CTRY22CD, CTRY22NM, CTRY22NMWField Types – Text, Text, Text, TextField Lengths – 9, 9, 7, 7

  17. Highest population density by country 2024

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  18. R

    World Countries Boundaries

    • entrepot.recherche.data.gouv.fr
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kyllian James; Kyllian James (2025). World Countries Boundaries [Dataset]. http://doi.org/10.57745/ABJ8OQ
    Explore at:
    application/geo+json(32366068), html(400495994), html(1043808), pdf(82736), application/geo+json(32388771), application/geo+json(19764013)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Recherche Data Gouv
    Authors
    Kyllian James; Kyllian James
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Area covered
    World
    Dataset funded by
    Agence nationale de la recherche
    Description

    1 Overview World Administrative Boundaries are available from various sources (UN, WHO, Global Administrative Areas [GADM], Natural Earth, World Bank). We would like to have the most accurate one with a reasonable size for an interactive world map in a Data Exploration Application, called CLIMINET. We provide a complete Geospatial Data that covers at least all 249 countries in the international ISO 3166-1 standard. We aim to maintain a reasonable data size, with countries' boundaries as accurate as possible, to ensure FLUIDITY in data visualization applications. The data are optimized for efficient performance and smooth interactions in interactive world maps for the best possible user experience. 2. Data Overview Number of Spatial Features: 275 countries/territories Data Sources: Compiled from multiple sources to ensure completeness and precision (WHO, Global Administrative Areas [GADM]) CRS Options: WGS84 [EPSG:4326] World Robinson (1963) [ESRI:54030] World Winkel-Tripel (Winkel III) - (1921) [ESRI:54042] Data Level: Level 0 (Countries) File Format: GeoJSON File Size: WGS84 [EPSG:4326]: 18.86 MB World Robinson (1963) [ESRI:54030]: 30.91 MB World Winkel-Tripel (Winkel III) - (1921) [ESRI:54042]: 30.90 MB 3. Data Revision Date The data were last updated on 2024-12-19. For further information on data structure and implementation, refer to the metadata files.

  19. Afrobarometer Survey 2024 - Morocco

    • microdata.worldbank.org
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Development Studies (IDS) (2025). Afrobarometer Survey 2024 - Morocco [Dataset]. https://microdata.worldbank.org/index.php/catalog/6767
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    University of Nairobi in Kenya
    Institute for Development Studies (IDS)
    Time period covered
    2024
    Area covered
    Morocco
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, Round 7 (2016-2018) 34 countries, Round 8 (2019-2021), and Round 9 (2021-2023). The survey covers about 40 countries in Round 10.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of Morocco who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    Morocco - Sample size: 1,200 - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and urban-rural location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual - Weighting: Weighted to account for individual selection probabilities - Sampling frame: Projection de la population en 2024 effectuée par le Haut-Commissariat au Plan sur la base du Recensement Général de la Population et de l'Habitat de 2014

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 10 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    Response rate

    Response rate was 32.7%.

    Sampling error estimates

    The sample size yields country-level results with a margin of error of +/-3 percentage points at a 95% confidence level.

  20. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    • nada-demo.ihsn.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Largest countries and territories in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
Organization logo

Largest countries and territories in the world by area

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 29, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

Russia is the largest country in the world by far, with a total area of just over 17 million square kilometers. After Antarctica, the next three countries are Canada, the U.S., and China; all between 9.5 and 10 million square kilometers. The figures given include internal water surface area (such as lakes or rivers) - if the figures were for land surface only then China would be the second largest country in the world, the U.S. third, and Canada (the country with more lakes than the rest of the world combined) fourth. Russia Russia has a population of around 145 million people, putting it in the top ten most populous countries in the world, and making it the most populous in Europe. However, it's vast size gives it a very low population density, ranked among the bottom 20 countries. Most of Russia's population is concentrated in the west, with around 75 percent of the population living in the European part, while around 75 percent of Russia's territory is in Asia; the Ural Mountains are considered the continental border. Elsewhere in the world Beyond Russia, the world's largest countries all have distinctive topographies and climates setting them apart. The United States, for example, has climates ranging from tundra in Alaska to tropical forests in Florida, with various mountain ranges, deserts, plains, and forests in between. Populations in these countries are often concentrated in urban areas, and are not evenly distributed across the country. For example, around 85 percent of Canada's population lives within 100 miles of the U.S. border; around 95 percent of China lives east of the Heihe–Tengchong Line that splits the country; and the majority of populations in large countries such as Australia or Brazil live near the coast.

Search
Clear search
Close search
Google apps
Main menu