In 2021, ** percent of Chinese full-time employees had access to a Diversity, Equity, and inclusion (DEI) program at their workplace. The global average was ** percent of employees in the same year.
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics
This database that can be used for macro-level analysis of road accidents on interurban roads in Europe. Through the variables it contains, road accidents can be explained using variables related to economic resources invested in roads, traffic, road network, socioeconomic characteristics, legislative measures and meteorology. This repository contains the data used for the analysis carried out in the papers: 1. Calvo-Poyo F., Navarro-Moreno J., de Oña J. (2020) Road Investment and Traffic Safety: An International Study. Sustainability 12:6332. https://doi.org/10.3390/su12166332 2. Navarro-Moreno J., Calvo-Poyo F., de Oña J. (2022) Influence of road investment and maintenance expenses on injured traffic crashes in European roads. Int J Sustain Transp 1–11. https://doi.org/10.1080/15568318.2022.2082344 3. Navarro-Moreno, J., Calvo-Poyo, F., de Oña, J. (2022) Investment in roads and traffic safety: linked to economic development? A European comparison. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-22567 The file with the database is available in excel. DATA SOURCES The database presents data from 1998 up to 2016 from 20 european countries: Austria, Belgium, Croatia, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden and United Kingdom. Crash data were obtained from the United Nations Economic Commission for Europe (UNECE) [2], which offers enough level of disaggregation between crashes occurring inside versus outside built-up areas. With reference to the data on economic resources invested in roadways, deserving mention –given its extensive coverage—is the database of the Organisation for Economic Cooperation and Development (OECD), managed by the International Transport Forum (ITF) [1], which collects data on investment in the construction of roads and expenditure on their maintenance, following the definitions of the United Nations System of National Accounts (2008 SNA). Despite some data gaps, the time series present consistency from one country to the next. Moreover, to confirm the consistency and complete missing data, diverse additional sources, mainly the national Transport Ministries of the respective countries were consulted. All the monetary values were converted to constant prices in 2015 using the OECD price index. To obtain the rest of the variables in the database, as well as to ensure consistency in the time series and complete missing data, the following national and international sources were consulted: Eurostat [3] Directorate-General for Mobility and Transport (DG MOVE). European Union [4] The World Bank [5] World Health Organization (WHO) [6] European Transport Safety Council (ETSC) [7] European Road Safety Observatory (ERSO) [8] European Climatic Energy Mixes (ECEM) of the Copernicus Climate Change [9] EU BestPoint-Project [10] Ministerstvo dopravy, República Checa [11] Bundesministerium für Verkehr und digitale Infrastruktur, Alemania [12] Ministerie van Infrastructuur en Waterstaat, Países Bajos [13] National Statistics Office, Malta [14] Ministério da Economia e Transição Digital, Portugal [15] Ministerio de Fomento, España [16] Trafikverket, Suecia [17] Ministère de l’environnement de l’énergie et de la mer, Francia [18] Ministero delle Infrastrutture e dei Trasporti, Italia [19–25] Statistisk sentralbyrå, Noruega [26-29] Instituto Nacional de Estatística, Portugal [30] Infraestruturas de Portugal S.A., Portugal [31–35] Road Safety Authority (RSA), Ireland [36] DATA BASE DESCRIPTION The database was made trying to combine the longest possible time period with the maximum number of countries with complete dataset (some countries like Lithuania, Luxemburg, Malta and Norway were eliminated from the definitive dataset owing to a lack of data or breaks in the time series of records). Taking into account the above, the definitive database is made up of 19 variables, and contains data from 20 countries during the period between 1998 and 2016. Table 1 shows the coding of the variables, as well as their definition and unit of measure. Table. Database metadata Code Variable and unit fatal_pc_km Fatalities per billion passenger-km fatal_mIn Fatalities per million inhabitants accid_adj_pc_km Accidents per billion passenger-km p_km Billions of passenger-km croad_inv_km Investment in roads construction per kilometer, €/km (2015 constant prices) croad_maint_km Expenditure on roads maintenance per kilometer €/km (2015 constant prices) prop_motorwa Proportion of motorways over the total road network (%) populat Population, in millions of inhabitants unemploy Unemployment rate (%) petro_car Consumption of gasolina and petrol derivatives (tons), per tourism alcohol Alcohol consumption, in liters per capita (age > 15) mot_index Motorization index, in cars per 1,000 inhabitants den_populat Population density, inhabitants/km2 cgdp Gross Domestic Product (GDP), in € (2015 constant prices) cgdp_cap GDP per capita, in € (2015 constant prices) precipit Average depth of rain water during a year (mm) prop_elder Proportion of people over 65 years (%) dps Demerit Point System, dummy variable (0: no; 1: yes) freight Freight transport, in billions of ton-km ACKNOWLEDGEMENTS This database was carried out in the framework of the project “Inversión en carreteras y seguridad vial: un análisis internacional (INCASE)”, financed by: FEDER/Ministerio de Ciencia, Innovación y Universidades–Agencia Estatal de Investigación/Proyecto RTI2018-101770-B-I00, within Spain´s National Program of R+D+i Oriented to Societal Challenges. Moreover, the authors would like to express their gratitude to the Ministry of Transport, Mobility and Urban Agenda of Spain (MITMA), and the Federal Ministry of Transport and Digital Infrastructure of Germany (BMVI) for providing data for this study. REFERENCES 1. International Transport Forum OECD iLibrary | Transport infrastructure investment and maintenance. 2. United Nations Economic Commission for Europe UNECE Statistical Database Available online: https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS/?rxid=18ad5d0d-bd5e-476f-ab7c-40545e802eeb (accessed on Apr 28, 2020). 3. European Commission Database - Eurostat Available online: https://ec.europa.eu/eurostat/data/database (accessed on Apr 28, 2021). 4. Directorate-General for Mobility and Transport. European Commission EU Transport in figures - Statistical Pocketbooks Available online: https://ec.europa.eu/transport/facts-fundings/statistics_en (accessed on Apr 28, 2021). 5. World Bank Group World Bank Open Data | Data Available online: https://data.worldbank.org/ (accessed on Apr 30, 2021). 6. World Health Organization (WHO) WHO Global Information System on Alcohol and Health Available online: https://apps.who.int/gho/data/node.main.GISAH?lang=en (accessed on Apr 29, 2021). 7. European Transport Safety Council (ETSC) Traffic Law Enforcement across the EU - Tackling the Three Main Killers on Europe’s Roads; Brussels, Belgium, 2011; 8. Copernicus Climate Change Service Climate data for the European energy sector from 1979 to 2016 derived from ERA-Interim Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-european-energy-sector?tab=overview (accessed on Apr 29, 2021). 9. Klipp, S.; Eichel, K.; Billard, A.; Chalika, E.; Loranc, M.D.; Farrugia, B.; Jost, G.; Møller, M.; Munnelly, M.; Kallberg, V.P.; et al. European Demerit Point Systems : Overview of their main features and expert opinions. EU BestPoint-Project 2011, 1–237. 10. Ministerstvo dopravy Serie: Ročenka dopravy; Ročenka dopravy; Centrum dopravního výzkumu: Prague, Czech Republic; 11. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2003/2004; Hamburg, Germany, 2004; ISBN 3871542946. 12. Bundesministerium für Verkehr und digitale Infrastruktur Verkehr in Zahlen 2018/2019. In Verkehrsdynamik; Flensburg, Germany, 2018 ISBN 9783000612947. 13. Ministerie van Infrastructuur en Waterstaat Rijksjaarverslag 2018 a Infrastructuurfonds; The Hague, Netherlands, 2019; ISBN 0921-7371. 14. Ministerie van Infrastructuur en Milieu Rijksjaarverslag 2014 a Infrastructuurfonds; The Hague, Netherlands, 2015; ISBN 0921- 7371. 15. Ministério da Economia e Transição Digital Base de Dados de Infraestruturas - GEE Available online: https://www.gee.gov.pt/pt/publicacoes/indicadores-e-estatisticas/base-de-dados-de-infraestruturas (accessed on Apr 29, 2021). 16. Ministerio de Fomento. Dirección General de Programación Económica y Presupuestos. Subdirección General de Estudios Económicos y Estadísticas Serie: Anuario estadístico; NIPO 161-13-171-0; Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento: Madrid, Spain; 17. Trafikverket The Swedish Transport Administration Annual report: 2017; 2018; ISBN 978-91-7725-272-6. 18. Ministère de l’Équipement, du T. et de la M. Mémento de statistiques des transports 2003; Ministère de l’environnement de l’énergie et de la mer, 2005; 19. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle Infrastrutture e dei Trasporti Anno 2000; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 2001; 20. Ministero delle Infrastrutture e dei Trasporti Conto nazionale dei trasporti 1999. 2000. 21. Generale, D.; Informativi, S. delle Infrastrutture e dei Trasporti Anno 2004. 22. Ministero delle Infrastrutture e dei Trasporti Conto Nazionale delle Infrastrutture e dei Trasporti Anno 2001; 2002; 23. Ministero delle Infrastrutture e dei
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Investment Abroad: DI: DEI: Attributable Reserves data was reported at 344,823.800 SGD mn in 2016. This records an increase from the previous number of 318,774.800 SGD mn for 2015. Singapore Investment Abroad: DI: DEI: Attributable Reserves data is updated yearly, averaging 64,344.000 SGD mn from Dec 1994 (Median) to 2016, with 23 observations. The data reached an all-time high of 344,823.800 SGD mn in 2016 and a record low of 8,467.000 SGD mn in 1996. Singapore Investment Abroad: DI: DEI: Attributable Reserves data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.O001: Direct Investment Abroad.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Investment Abroad: DI: DEI: Share Capital, Net from Branches (SN) data was reported at 348,365.200 SGD mn in 2016. This records an increase from the previous number of 314,566.300 SGD mn for 2015. Singapore Investment Abroad: DI: DEI: Share Capital, Net from Branches (SN) data is updated yearly, averaging 102,566.300 SGD mn from Dec 1994 (Median) to 2016, with 23 observations. The data reached an all-time high of 348,365.200 SGD mn in 2016 and a record low of 18,446.900 SGD mn in 1994. Singapore Investment Abroad: DI: DEI: Share Capital, Net from Branches (SN) data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.O001: Direct Investment Abroad.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about politicians. It has 3 rows and is filtered where the political party is Dei Lenk (Luxembourg). It features 10 columns including birth date, death date, country, and gender.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Investment Abroad: DI: DEI: SN:Share Capital-Subsidiaries/Associates data was reported at 336,063.200 SGD mn in 2016. This records an increase from the previous number of 303,202.600 SGD mn for 2015. Singapore Investment Abroad: DI: DEI: SN:Share Capital-Subsidiaries/Associates data is updated yearly, averaging 100,665.700 SGD mn from Dec 1994 (Median) to 2016, with 23 observations. The data reached an all-time high of 336,063.200 SGD mn in 2016 and a record low of 17,372.400 SGD mn in 1994. Singapore Investment Abroad: DI: DEI: SN:Share Capital-Subsidiaries/Associates data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.O001: Direct Investment Abroad.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Singapore Investment Abroad: DI: DEI: SN: Net Amount due from Branches data was reported at 12,302.000 SGD mn in 2016. This records an increase from the previous number of 11,363.700 SGD mn for 2015. Singapore Investment Abroad: DI: DEI: SN: Net Amount due from Branches data is updated yearly, averaging 1,900.600 SGD mn from Dec 1994 (Median) to 2016, with 23 observations. The data reached an all-time high of 12,302.000 SGD mn in 2016 and a record low of 1,024.500 SGD mn in 1995. Singapore Investment Abroad: DI: DEI: SN: Net Amount due from Branches data remains active status in CEIC and is reported by Department of Statistics. The data is categorized under Global Database’s Singapore – Table SG.O001: Direct Investment Abroad.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 187 countries was 156 kg per hectare of arable land. The highest value was in Malaysia: 2148 kg per hectare of arable land and the lowest value was in the Central African Republic: 0.2 kg per hectare of arable land. The indicator is available from 1961 to 2022. Below is a chart for all countries where data are available.
https://w3id.org/italia/controlled-vocabulary/licences/A31_CCBYSA40https://w3id.org/italia/controlled-vocabulary/licences/A31_CCBYSA40
Producers Non-State body - diplomatic representation/office of foreign countries based in Italy
The value of the debt per adult in Europe in 2022 varied a lot from country to country. While Swiss adults had on average over 151,600 U.S. dollars of debt in 2022, adults from Azerbaijan had a debt of 540 dollars. Meanwhile, the average volume of debt in Europe that year was almost 25,000 U.S. dollars per adult. The household debt to disposable income ratio in Europe follows a similarly varied distribution. As varied as the volume of debts in Europe are, the most common forms of debt are still very similar and they tend to include: credit cards, medical debt, student loans, overdrafts, mortgages, automobile financing and personal loans.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2021, ** percent of Chinese full-time employees had access to a Diversity, Equity, and inclusion (DEI) program at their workplace. The global average was ** percent of employees in the same year.