100+ datasets found
  1. Highest population density by country 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  2. Projected population density of most densely populated countries 2023-2050

    • statista.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Projected population density of most densely populated countries 2023-2050 [Dataset]. https://www.statista.com/statistics/912425/global-population-density-by-select-country/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    As of July 2023, Monaco is the country with the highest population density worldwide, with an estimated population of nearly ****** per square kilometer.

  3. G

    Population density in South America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2020). Population density in South America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/population_density/South-America/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    May 13, 2020
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2021
    Area covered
    South America, World
    Description

    The average for 2021 based on 12 countries was 25 people per square km. The highest value was in Ecuador: 72 people per square km and the lowest value was in Guyana: 4 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.

  4. Population density in Latin America and the Caribbean 2025, by country

    • statista.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in Latin America and the Caribbean 2025, by country [Dataset]. https://www.statista.com/statistics/789684/population-density-latin-america-country/
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Caribbean, Americas, Latin America
    Description

    As of 2025, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 657.16 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.75 people per square kilometer.

  5. d

    Global Population Density Grid Time Series Estimates

    • catalog.data.gov
    • dataverse.harvard.edu
    • +1more
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Population Density Grid Time Series Estimates [Dataset]. https://catalog.data.gov/dataset/global-population-density-grid-time-series-estimates
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.

  6. Population Density by County 2020

    • noaa.hub.arcgis.com
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2024). Population Density by County 2020 [Dataset]. https://noaa.hub.arcgis.com/maps/04c3d53bf58c4ecba1327ff6d2b39b98
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This layer presents population density data by county for states bordering the U.S. Gulf, sourced from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. Population density is displayed as the number of people per square kilometer. Broadly speaking, population density indicates how many people would inhabit one square kilometer if the population were evenly distributed across the area. However, population distribution is uneven. People tend to cluster in urban areas, while those in rural regions are spread out over a much more sparsely populated landscape. Population density is a crucial metric for understanding and managing human population dynamics and their effects on society and the environment. It helps assess various environmental challenges, including urban sprawl, pollution, habitat loss, and resource depletion. Coastal areas frequently experience high population density due to urbanization, influencing land use, housing, and infrastructure development. This density can also stimulate tourism and recreation, necessitating careful planning for facilities, transportation, and environmental protection. Additionally, coastal regions are more susceptible to natural disasters such as hurricanes and flooding, making population density data essential for developing effective evacuation plans and emergency services. Data: U.S. Census BureauDocumentation: U.S. Census Bureau This is a component of the Gulf Data Atlas (V2.0) for the Socioeconomic Conditions topic area.

  7. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Authors
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  8. World Population Density by Country

    • kaggle.com
    zip
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph Neumann (2020). World Population Density by Country [Dataset]. https://www.kaggle.com/xscripter/world-population-density-by-country
    Explore at:
    zip(4156 bytes)Available download formats
    Dataset updated
    Apr 5, 2020
    Authors
    Ralph Neumann
    Area covered
    World
    Description

    Context

    This is the world population density file extracted from the UN Report/file found on: https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F06_POPULATION_DENSITY.xlsx

    Content

    I found this demographic data file could be usefull to predict the COVID-19 case/fatalities outcome. It gives as a picture about the density of population by km2, country and region.

    I stripped the original file because we don't need most of the columns like data from 1950-2019. Relevant are data Country, Region and Population per km2.

  9. o

    The spatial distribution of population density in 2009 based on country...

    • data.opendata.am
    Updated Jul 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The spatial distribution of population density in 2009 based on country total adjusted to match the corresponding UNPD estimate, Armenia - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/wdwp-45201
    Explore at:
    Dataset updated
    Jul 8, 2023
    Area covered
    Armenia
    Description

    Estimated population density per grid-cell. The dataset is available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per square kilometre based on country totals adjusted to match the corresponding official United Nations population estimates that have been prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2019 Revision of World Population Prospects). The mapping approach is Random Forest-based dasymetric redistribution.

  10. n

    Gridded Population of the World, Version 4 (GPWv4): Population Density...

    • earthdata.nasa.gov
    • dataverse.harvard.edu
    • +4more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS, Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11 [Dataset]. http://doi.org/10.7927/H4F47M65
    Explore at:
    Dataset authored and provided by
    ESDIS
    Area covered
    World
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers with respect to relative spatial distribution, but adjusted to match the 2015 Revision of the United Nation's World Population Prospects (UN WPP) country totals, for the years 2000, 2005, 2011, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign UN WPP-adjusted population counts to 30 arc-second grid cells. The density rasters were created by dividing the UN WPP-adjusted population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second adjusted count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.

  11. Population density APAC 2023, by country

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density APAC 2023, by country [Dataset]. https://www.statista.com/statistics/640612/asia-pacific-population-density-by-country/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    APAC, Asia
    Description

    In 2023, there were around ***** inhabitants per square kilometer living in Singapore. In comparison, there were approximately two inhabitants per square kilometer living in Mongolia that year.

  12. G

    Population density in Africa | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2020). Population density in Africa | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/population_density/Africa/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    May 13, 2020
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1961 - Dec 31, 2021
    Area covered
    World, Africa
    Description

    The average for 2021 based on 53 countries was 112 people per square km. The highest value was in Mauritius: 634 people per square km and the lowest value was in Namibia: 3 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.

  13. Population density in the U.S. 2023, by state

    • akomarchitects.com
    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veera Korhonen (2025). Population density in the U.S. 2023, by state [Dataset]. https://www.akomarchitects.com/?p=2437241
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Veera Korhonen
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  14. H

    Japan - Population Density

    • data.humdata.org
    geotiff
    Updated Sep 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). Japan - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-japan
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Sep 19, 2021
    Dataset provided by
    WorldPop
    Area covered
    Japan
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  15. f

    Population density by country (FAOSTAT - Global)

    • data.apps.fao.org
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Population density by country (FAOSTAT - Global) [Dataset]. https://data.apps.fao.org/map/catalog/sru/search?keyword=Tag_forestry
    Explore at:
    Dataset updated
    Dec 26, 2021
    Description

    The dataset represents population density calculated based on FAOSTAT data 2017.

  16. Population density

    • ec.europa.eu
    • db.nomics.world
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Population density [Dataset]. http://doi.org/10.2908/TPS00003
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.data+csv;version=1.0.0, json, tsv, application/vnd.sdmx.data+xml;version=3.0.0Available download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2012 - 2023
    Area covered
    Ireland, Finland, Romania, Iceland, Estonia, Serbia, Euro area – 20 countries (from 2023), Hungary, Malta, Latvia
    Description

    Ratio between the annual average population and the land area. The land area concept (excluding inland waters, such as lakes, wide rivers, estuaries) should be used wherever available; if not available, then the total area (including inland waters) is used.

  17. a

    Minnesota Population Density By County-Copy

    • umn.hub.arcgis.com
    Updated Dec 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2020). Minnesota Population Density By County-Copy [Dataset]. https://umn.hub.arcgis.com/maps/64d3f12b5e7642faa02099142da40aad
    Explore at:
    Dataset updated
    Dec 11, 2020
    Dataset authored and provided by
    University of Minnesota
    Area covered
    Description

    Minnesota on the Map: Minnesota Population Density By CountyThis is a population density map of Minnesota by county with the 5 largest cities in Minnesota labeled.The darker of a color a county has, the denser it's population. The black lines separate the counties. I downloaded the county outlines and county population data, and I made the population density scale and colors. It was hard to figure out a good scale level, but I eventually decided on 1 person per square mile to 510 people per square mile. Though there are counties with higher population density than 510 people per square mile, there are also counties with much lower population densities that are close enough in value to the point where their representative colors would be too close together to effectively show their population density data if a scale with a larger range was used. I used a simple, grey basemap to give context as to where Minnesota is and because maps with more information aren't necessary and draw attention away from population density.It was hard to figure out what map to make, but I figured that a population density map would be useful for people who are interested in moving to a certain county or people who are interested in advertising and want to spend their money wisely.This map helps potential residents, businesses, and anyone curious learn more about the population of Minnesota. This is vital information about Minnesota which will help many people.

  18. India - Population Density

    • data.amerigeoss.org
    geotiff
    Updated Jun 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). India - Population Density [Dataset]. https://data.amerigeoss.org/gl/dataset/worldpop-population-density-for-india
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    India
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  19. World Population by country 2024

    • kaggle.com
    zip
    Updated Jul 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrar Hussain (2024). World Population by country 2024 [Dataset]. https://www.kaggle.com/datasets/dataanalyst001/world-population-by-country-2024
    Explore at:
    zip(6496 bytes)Available download formats
    Dataset updated
    Jul 4, 2024
    Authors
    Ibrar Hussain
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    This dataset provides information on the population statistics of various countries for the years 2023 and 2024. It includes details such as the total area of each country, population density, growth rate, percentage of the world population, and world rank by population.

  20. d

    Africa Population Distribution Database

    • search.dataone.org
    Updated Nov 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deichmann, Uwe; Nelson, Andy (2014). Africa Population Distribution Database [Dataset]. https://search.dataone.org/view/Africa_Population_Distribution_Database.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Deichmann, Uwe; Nelson, Andy
    Time period covered
    Jan 1, 1960 - Dec 31, 1997
    Area covered
    Description

    The Africa Population Distribution Database provides decadal population density data for African administrative units for the period 1960-1990. The databsae was prepared for the United Nations Environment Programme / Global Resource Information Database (UNEP/GRID) project as part of an ongoing effort to improve global, spatially referenced demographic data holdings. The database is useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.

    This documentation describes the third version of a database of administrative units and associated population density data for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP, 1997; Deichmann and Eklundh, 1991), while the second version represented an update and expansion of this first product (Deichmann, 1994; WRI, 1995). The current work is also related to National Center for Geographic Information and Analysis (NCGIA) activities to produce a global database of subnational population estimates (Tobler et al., 1995), and an improved database for the Asian continent (Deichmann, 1996). The new version for Africa provides considerably more detail: more than 4700 administrative units, compared to about 800 in the first and 2200 in the second version. In addition, for each of these units a population estimate was compiled for 1960, 70, 80 and 90 which provides an indication of past population dynamics in Africa. Forthcoming are population count data files as download options.

    African population density data were compiled from a large number of heterogeneous sources, including official government censuses and estimates/projections derived from yearbooks, gazetteers, area handbooks, and other country studies. The political boundaries template (PONET) of the Digital Chart of the World (DCW) was used delineate national boundaries and coastlines for African countries.

    For more information on African population density and administrative boundary data sets, see metadata files at [http://na.unep.net/datasets/datalist.php3] which provide information on file identification, format, spatial data organization, distribution, and metadata reference.

    References:

    Deichmann, U. 1994. A medium resolution population database for Africa, Database documentation and digital database, National Center for Geographic Information and Analysis, University of California, Santa Barbara.

    Deichmann, U. and L. Eklundh. 1991. Global digital datasets for land degradation studies: A GIS approach, GRID Case Study Series No. 4, Global Resource Information Database, United Nations Environment Programme, Nairobi.

    UNEP. 1997. World Atlas of Desertification, 2nd Ed., United Nations Environment Programme, Edward Arnold Publishers, London.

    WRI. 1995. Africa data sampler, Digital database and documentation, World Resources Institute, Washington, D.C.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
Organization logo

Highest population density by country 2024

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
World
Description

Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

Search
Clear search
Close search
Google apps
Main menu