100+ datasets found
  1. Data from: County Health Status Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). County Health Status Profiles [Dataset]. https://data.chhs.ca.gov/dataset/county-health-status-profiles
    Explore at:
    csv(4783), csv(567843), csv(570397), csv(549726), zip, csv(1107046), csv(570685)Available download formats
    Dataset updated
    Aug 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    County Health Status Profiles is an annually published report for the State of California by the California Department of Public Health in collaboration with the California Conference of Local Health Officers. Health indicators are measured for 58 counties and California statewide that can be directly compared to national standards and populations of similar composition. Where available, the measurements are ranked and compared with target rates established for Healthy People National Objectives.

    For tables where the health indicator denominator and numerator are derived from the same data source, the denominator excludes records for which the health indicator data is missing and unable to be imputed.

    For more information see the County Health Status Profiles report.

  2. Health ranking of countries worldwide in 2023, by health index score

    • statista.com
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Health ranking of countries worldwide in 2023, by health index score [Dataset]. https://www.statista.com/statistics/1290168/health-index-of-countries-worldwide-by-health-index-score/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2023, Singapore ranked first with a health index score of ****, followed by Japan and South Korea. The health index measures the extent to which people are healthy and have access to the necessary services to maintain good health, including health outcomes, health systems, illness and risk factors, and mortality rates. The statistic shows the health and health systems ranking of countries worldwide in 2023, by their health index score.

  3. OECD Countries Health Indicators Data Package

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). OECD Countries Health Indicators Data Package [Dataset]. https://www.johnsnowlabs.com/marketplace/oecd-countries-health-indicators-data-package/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Description

    This data package contains a wide spectrum of internationally comparable indicators that cover population demographics and population health status (including natality, mortality, quality of life and morbidity) and major determinants of health like healthcare system and services and behavioral health risk factors. It must be mentioned that OECD available data cover predominantly two major areas: population health status and healthcare services (resources and utilization).

  4. Patients willing to share health data in other countries in the Nordics 2023...

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Patients willing to share health data in other countries in the Nordics 2023 [Dataset]. https://www.statista.com/statistics/1472635/nordic-countries-sharing-digital-health-data/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2, 2023 - Mar 4, 2023
    Area covered
    Iceland, Finland, Denmark, Norway, Sweden, Nordic countries
    Description

    In 2023, the most common type of digital health data that patients in all Nordic countries are willing to share in the case of the need for personal treatment in another country was medication and prescriptions. Subsequently, the willingness of patients to share medical history and immunization data was also similarly common, accepted by around ** percent of the patients in each country.

  5. PLACES: Local Data for Better Health, County Data 2021 release

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Local Data for Better Health, County Data 2021 release [Dataset]. https://catalog.data.gov/dataset/places-local-data-for-better-health-county-data-2021-release-45480
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset contains model-based county-level estimates for the PLACES 2021 release. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 4 chronic disease-related health risk behaviors, 13 health outcomes, 3 health status, and 9 on using preventive services. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2019 or 2018 county population estimate data, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS because the relevant questions are only asked every other year in the BRFSS. More information about the methodology can be found at www.cdc.gov/places.

  6. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(28125832), csv(52019564), csv(5095), csv(60201673), csv(11738570), csv(60517511), csv(74689382), csv(60023260), csv(15127221), csv(24235858), csv(75015194), csv(74043128), csv(60676655), csv(74497014), csv(73906266), csv(1128641), csv(74351424), csv(51592721), zip, csv(25609913)Available download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  7. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  8. Equity ranking of 11 select countries' health care systems 2021

    • statista.com
    Updated Sep 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Equity ranking of 11 select countries' health care systems 2021 [Dataset]. https://www.statista.com/statistics/1290451/health-care-system-equity-ranking-of-select-countries/
    Explore at:
    Dataset updated
    Sep 5, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Worldwide
    Description

    According to a 2021 health care systems ranking among selected high-income countries, the United States came last in the overall ranking of its health care system performance. The overall ranking was based on five performance categories, including access to care, care process, administrative efficiency, equity, and health care outcomes. For the category equity, which takes into account income-related disparities in the health system, the U.S. was ranked last again, while Australia took first place. Other disparities of ethnicity, gender, or geography were not included. This statistic present the health care equity rankings of the United States' health care system compared to ten other high-income countries in 2021.

  9. d

    COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-hospitalizations-and-deaths-by-county
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d

  10. m

    Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First...

    • data.mendeley.com
    Updated Jul 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hasmot Ali (2020). Data for: COVID-19 Dataset: Worldwide Spread Log Including Countries First Case And First Death [Dataset]. http://doi.org/10.17632/vw427wzzkk.5
    Explore at:
    Dataset updated
    Jul 20, 2020
    Authors
    Hasmot Ali
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Contain informative data related to COVID-19 pandemic. Specially, figure out about the First Case and First Death information for every single country. The datasets mainly focus on two major fields first one is First Case which consists of information of Date of First Case(s), Number of confirm Case(s) at First Day, Age of the patient(s) of First Case, Last Visited Country and the other one First Death information consist of Date of First Death and Age of the Patient who died first for every Country mentioning corresponding Continent. The datasets also contain the Binary Matrix of spread chain among different country and region.

    *This is not a country. This is a ship. The name of the Cruise Ship was not given from the government.
    "N+": the age is not specified but greater than N
    “No Trace”: some data was not found
    “Unspecified”: not available from the authority
    “N/A”: for “Last Visited Country(s) of Confirmed Case(s)” column, “N/A” indicates that the confirmed case(s) of those countries do not have any travel history in recent past; in “Age of First Death(s)” column “N/A” indicates that those countries do not have may death case till May 16, 2020.

  11. d

    International Data Base

    • dknet.org
    • rrid.site
    • +2more
    Updated Jan 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). International Data Base [Dataset]. http://identifiers.org/RRID:SCR_013139
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490

  12. B

    Belarus BY: Adolescent Fertility Rate: Births per 1000 Women Aged 15-19

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Belarus BY: Adolescent Fertility Rate: Births per 1000 Women Aged 15-19 [Dataset]. https://www.ceicdata.com/en/belarus/social-health-statistics
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Belarus
    Description

    BY: Adolescent Fertility Rate: Births per 1000 Women Aged 15-19 data was reported at 8.595 Ratio in 2023. This records a decrease from the previous number of 9.903 Ratio for 2022. BY: Adolescent Fertility Rate: Births per 1000 Women Aged 15-19 data is updated yearly, averaging 23.283 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 44.787 Ratio in 1992 and a record low of 8.595 Ratio in 2023. BY: Adolescent Fertility Rate: Births per 1000 Women Aged 15-19 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belarus – Table BY.World Bank.WDI: Social: Health Statistics. Adolescent fertility rate is the number of births per 1,000 women ages 15-19.;United Nations Population Division, World Population Prospects.;Weighted average;This is the Sustainable Development Goal indicator 3.7.2 [https://unstats.un.org/sdgs/metadata/].

  13. d

    Public Health Official Departures

    • data.world
    csv, zip
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2022). Public Health Official Departures [Dataset]. https://data.world/associatedpress/public-health-official-departures
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 7, 2022
    Authors
    The Associated Press
    Description

    Changelog:

    Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.

    Overview

    Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.

    In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.

    According to experts, that is the largest exodus of public health leaders in American history.

    Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.

    The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.

    Findings

    The AP and KHN found that:

    • One in five Americans live in a community that has lost its local public health department leader during the pandemic
    • Top public health officials in 28 states have left state-level departments ## Using this data To filter for data specific to your state, use this query

    To get total numbers of exits by state, broken down by state and local departments, use this query

    Methodology

    KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.

    The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.

    Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.

    The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.

    Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.

    Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.

    KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.

    Attribution

    Findings and the data should be cited as: "According to a KHN and Associated Press report."

    Is Data Missing?

    If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.

  14. OECD Mortality Statistics By Cause Of Death

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). OECD Mortality Statistics By Cause Of Death [Dataset]. https://www.johnsnowlabs.com/marketplace/oecd-mortality-statistics-by-cause-of-death/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    1960 - 2015
    Area covered
    OECD Members and Partners Countries
    Description

    This dataset contains mortality statistics for countries members of OECD (The Organization for Economic Co-operation and Development), for OECD key partners and countries in accession negotiations with OECD. The estimated values of the three mortality indicators: number of deaths, crude rate and age-adjusted rate, cover periods from 1960 to 2015.

  15. PLACES: Local Data for Better Health, County Data 2022 release

    • healthdata.gov
    • data.virginia.gov
    • +2more
    application/rdfxml +5
    Updated Jul 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). PLACES: Local Data for Better Health, County Data 2022 release [Dataset]. https://healthdata.gov/widgets/thhe-qk3e?mobile_redirect=true
    Explore at:
    csv, json, application/rdfxml, tsv, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    data.cdc.gov
    Description

    This dataset contains model-based county-level estimates for the PLACES 2022 release. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. This dataset includes estimates for 29 measures: 13 for health outcomes, 9 for preventive services use, 4 for chronic disease-related health risk behaviors, and 3 for health status. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2020 or 2019 county population estimate data, and American Community Survey 2016–2020 or 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.

  16. K

    Community Health Indicators

    • data.kingcounty.gov
    • datasets.ai
    • +1more
    csv, xlsx, xml
    Updated Jan 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Community Health Indicators [Dataset]. https://data.kingcounty.gov/Health-Wellness/Community-Health-Indicators/3e5z-nime
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jan 8, 2021
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    These indicators are presented by Public Health — Seattle & King County, in conjunction with the King County Hospitals for a Healthier Community (HHC). The data offer a comprehensive overview of demographics, health, and health behaviors among King County residents.

    Users can search by key word or topic area to filter the table of contents displayed below. After clicking on an indicator, a summary tab will open and users can click on additional tabs to explore data analyzed by demographic characteristics, see how rates have changed over time, and view data for cities/neighborhoods. Most indicators are interactive and users can hover over maps or charts to find more information.

    The data presented on this website may be reproduced without permission. Please use the following citation when reproducing: "Retrieved (date) from Public Health – Seattle & King County, Community Health Indicators. www.kingcounty.gov/chi"

  17. U

    United States US: People Practicing Open Defecation: Urban: % of Urban...

    • ceicdata.com
    Updated Mar 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United States US: People Practicing Open Defecation: Urban: % of Urban Population [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics
    Explore at:
    Dataset updated
    Mar 29, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2004 - Dec 1, 2015
    Area covered
    United States
    Description

    US: People Practicing Open Defecation: Urban: % of Urban Population data was reported at 0.000 % in 2015. This stayed constant from the previous number of 0.000 % for 2014. US: People Practicing Open Defecation: Urban: % of Urban Population data is updated yearly, averaging 0.000 % from Dec 2000 (Median) to 2015, with 16 observations. US: People Practicing Open Defecation: Urban: % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. People practicing open defecation refers to the percentage of the population defecating in the open, such as in fields, forest, bushes, open bodies of water, on beaches, in other open spaces or disposed of with solid waste.; ; WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation (http://www.wssinfo.org/).; Weighted Average;

  18. i

    Grant Giving Statistics for Low Country Health Care System

    • instrumentl.com
    Updated Mar 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Grant Giving Statistics for Low Country Health Care System [Dataset]. https://www.instrumentl.com/990-report/low-country-health-care-system
    Explore at:
    Dataset updated
    Mar 7, 2022
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Low Country Health Care System

  19. Quality of locally accessible healthcare in select countries worldwide 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Quality of locally accessible healthcare in select countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/917142/quality-of-locally-accessible-healthcare-worldwide-select-countries/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 26, 2023 - Aug 9, 2023
    Area covered
    Worldwide
    Description

    In 2024, roughly***** of individuals worldwide stated the quality of the healthcare they had access to in their country was good. The highest quality rating were given by people from Malaysia, Switzerland, and the Netherlands, while individuals in Hungary, Poland, and Peru rated their country's healthcare quality most poorly. This statistic presents the percentage of adults in select countries worldwide who agreed that the quality of the healthcare they had access to in their country was good or poor as of 2024.

  20. d

    Infectious Diseases by Disease, County, Year, and Sex

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Infectious Diseases by Disease, County, Year, and Sex [Dataset]. https://catalog.data.gov/dataset/infectious-diseases-by-disease-county-year-and-sex-6e856
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Public Health
    Description

    These data contain case counts and rates for selected communicable diseases—listed in the data dictionary—that met the surveillance case definition for that disease and was reported for California residents, by disease, county, year, and sex. The data represent cases with an estimated illness onset date from 2001 through the last year indicated from California Confidential Morbidity Reports and/or Laboratory Reports. Data captured represent reportable case counts as of the date indicated in the “Temporal Coverage” section below, so the data presented may differ from previous publications due to delays inherent to case reporting, laboratory reporting, and epidemiologic investigation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2025). County Health Status Profiles [Dataset]. https://data.chhs.ca.gov/dataset/county-health-status-profiles
Organization logo

Data from: County Health Status Profiles

Related Article
Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
csv(4783), csv(567843), csv(570397), csv(549726), zip, csv(1107046), csv(570685)Available download formats
Dataset updated
Aug 26, 2025
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Description

County Health Status Profiles is an annually published report for the State of California by the California Department of Public Health in collaboration with the California Conference of Local Health Officers. Health indicators are measured for 58 counties and California statewide that can be directly compared to national standards and populations of similar composition. Where available, the measurements are ranked and compared with target rates established for Healthy People National Objectives.

For tables where the health indicator denominator and numerator are derived from the same data source, the denominator excludes records for which the health indicator data is missing and unable to be imputed.

For more information see the County Health Status Profiles report.

Search
Clear search
Close search
Google apps
Main menu