Facebook
TwitterMonaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Facebook
TwitterAs of July 2023, Monaco is the country with the highest population density worldwide, with an estimated population of nearly ****** per square kilometer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 12 countries was 25 people per square km. The highest value was in Ecuador: 72 people per square km and the lowest value was in Guyana: 4 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterIn 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides information on the population statistics of various countries for the years 2023 and 2024. It includes details such as the total area of each country, population density, growth rate, percentage of the world population, and world rank by population.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Description
This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.
Attribute Information
Acknowledgements
https://www.worldometers.info/world-population/population-by-country/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 53 countries was 112 people per square km. The highest value was in Mauritius: 634 people per square km and the lowest value was in Namibia: 3 people per square km. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterIn 2022, Haiti ranked first by population density among the 21 countries presented in the ranking. Haiti's population density amounted to ****** people, while El Salvador and the Dominican Republic, the second and third countries, had records amounting to ****** people and ****** people, respectively.
Facebook
TwitterThe population rating shows how many people currently live in a particular country. This rating helps not only to compare countries by the number of inhabitants and population density, but also to predict the further dynamics of growth, stagnation and population decline.
Facebook
TwitterMogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.
Facebook
TwitterContent In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.
Dataset Glossary (Column-Wise) Rank: Rank by Population. Country Code: 3 Digit Country/Territories Code. Country/Territories: Name of the Country/Territories. Capital: Name of the Capital. Continent: Name of the Continent. 2023 Population: Population of the Country/Territories in the year 2023. 2022 Population: Population of the Country/Territories in the year 2022. 2021 Population: Population of the Country/Territories in the year 2021. 2020 Population: Population of the Country/Territories in the year 2020. 2015 Population: Population of the Country/Territories in the year 2015. 2010 Population: Population of the Country/Territories in the year 2010. 2000 Population: Population of the Country/Territories in the year 2000. Area (km²): Area size of the Country/Territories in square kilometer. Density (per km²): Population Density per square kilometer. Growth Rate (2023): Population Growth Rate by Country/Territories in 2023. World Population Percentage (2023): The population percentage by each Country/Territories in 2023.
Facebook
TwitterAs of 2025, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 657.16 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.75 people per square kilometer.
Facebook
TwitterThis service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us at http://goto.arcgisonline.com/landscape7/World_Population_Density_Estimate_2016.This layer is a global estimate of human population density for 2016. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Facebook
TwitterThis map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.
Facebook
TwitterMauritius had the highest population density level in Africa as of 2023, with nearly *** inhabitants per square kilometer. The country has also one of the smallest territories on the continent, which contributes to the high density. As a matter of fact, the majority of African countries with the largest concentration of people per square kilometer have the smallest geographical area as well. The exception is Nigeria, which ranks among the largest territorial countries in Africa and is very densely populated at the same time. After all, Nigeria has also the largest population on the continent.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Description: Worldometer Data Introduction This dataset contains detailed information on the population statistics of various countries, compiled from Worldometer. It includes demographic data such as yearly population changes, migration numbers, fertility rates, and urbanization metrics over multiple years.
Dataset Overview Total Entries: 4,104 Total Columns: 14 Columns Description country (object):
The name of the country. Example: 'India', 'China'. year (float64):
The year for which the data is recorded. Example: 2024, 2023. population (object):
The total population for the given year. Example: '1,441,719,852', '1,428,627,663'. yearly_change_pct (object):
The percentage change in population from the previous year. Example: '0.92%', '0.81%'. yearly_change (object):
The absolute change in population from the previous year. Example: '13,092,189', '11,454,490'. migrants (object):
The net number of migrants for the given year. Example: '-486,784', '-486,136'. median_age (object):
The median age of the population. Example: '28.6', '28.2'. fertility_rate (object):
The fertility rate for the given year. Example: '1.98', '2.00'. density_p_km2 (object):
The population density per square kilometer. Example: '485', '481'. urban_pop_pct (object):
The percentage of the population living in urban areas. Example: '36.8%', '36.3%'. urban_pop (object):
The total urban population for the given year. Example: '530,387,142', '518,239,122'. share_of_world_pop_pct (object):
The country's share of the world's population as a percentage. Example: '17.76%', '17.77%'. world_pop (object):
The total world population for the given year. Example: '8,118,835,999', '8,045,311,447'. global_rank (float64):
The global population rank of the country for the given year. Example: '1.0', '2.0'. Data Quality Missing Values:
Some columns have missing values which need to be handled before analysis. Columns with significant missing data: year, population, yearly_change_pct, yearly_change, migrants, median_age, fertility_rate, density_p_km2, urban_pop_pct, urban_pop, share_of_world_pop_pct, world_pop, global_rank. Data Types:
Most columns are of type object due to the presence of commas and percentage signs. Conversion to appropriate numeric types (e.g., integers, floats) is required for analysis. Potential Uses Demographic Analysis: Study population growth trends, migration patterns, and changes in fertility rates. Urbanization Studies: Analyze urban population growth and density changes over time. Global Ranking: Evaluate and compare the population statistics of different countries. Conclusion This dataset provides a comprehensive view of the world population trends over the years. Cleaning and preprocessing steps, including handling missing values and converting data types, will be necessary to prepare the data for analysis. This dataset can be valuable for researchers, demographers, and data scientists interested in population studies and demographic trends.
File Details Filename: worldometer_data.csv Size: 4104 rows x 14 columns Format: CSV Source Website: Worldometer Scraped Using: Scrapy
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Knowing where people are is crucial for policymakers, particularly for the efficient allocation of resources in their country and the development of effective, people-centred policies. However, rural population distribution maps suffer from biases related to the type of dataset used to predict population density, such as the use of nighttime lights datasets in areas without electricity. This renders widely used datasets irrelevant in rural areas and biases nationwide models towards urban areas. To compensate for such biases, we aim at understanding the importance and relationship between water-related covariates and population densities in a random forest model across the urban-rural gradient. By extending a recursive feature elimination framework, we show that commonly used covariates are only selected when modelling the whole country. However, once the highest density areas are removed, water-related characteristics (especially distance to boreholes) become important covariates of population density outside of densely populated areas. This has important implications for modelling population in rural areas, including for a better estimation of the size of remote communities. When seeking to produce country-level population maps, we encourage further studies to explicitly account for rural areas by considering the urban-rural gradient and encourage the use of water-related datasets.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**🌍 World Countries Dataset This World Countries Dataset contains detailed information about countries across the globe, offering insights into their geographic, demographic, and economic characteristics.
It includes various features such as population, area, GDP, languages, and regional classifications. This dataset is ideal for projects related to data visualization, statistical analysis, geographical studies, or machine learning applications such as clustering or classification of countries.
This dataset was manually compiled/collected from reliable open data sources (e.g., Wikipedia, World Bank, or other governmental datasets).
**🔍 Sample Questions Explored Using Python: - Q. 1) Which countries have the highest and lowest population? - Q. 2) What is the average area (in sq. km) of countries in each region? - Q. 3) Which countries have more than 100 million population and GDP above $1 trillion? - Q. 4) Which languages are most commonly spoken across countries? - Q. 5) Show a bar graph comparing GDPs of G7 nations. - Q. 6) How many countries are there in each continent or region? - Q. 7) Which countries have both a high population density and low GDP per capita? - Q. 8) Create a world map visualization of population or GDP distribution. - Q. 9) What are the top 10 most densely populated countries? - Q. 10) How many landlocked countries are there in the world?
**🧾 Features / Columns in the Dataset: - Country: The name of the country (e.g., "Pakistan", "France").
Capital: The capital city of the country.
Region: Broad geographical region (e.g., "Asia", "Europe").
Subregion: More specific geographical grouping (e.g., "Southern Asia").
Population: Total population of the country.
Area (sq. km): Total land area in square kilometers.
Population Density: Number of people per square kilometer.
GDP (USD): Gross Domestic Product (in U.S. dollars).
GDP per Capita: GDP divided by the population.
Official Languages: Officially recognized language(s) spoken.
Currency: Name of the currency used.
Timezones: Timezones in which the country falls.
Borders: List of bordering countries (if any).
Landlocked: Whether the country is landlocked (Yes/No).
Latitude / Longitude: Coordinates for geographical plotting.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
With 3.5 persons per square kilometre, Canada is one of the countries with the lowest population densities in the world. Census metropolitan areas (CMAs) with the highest population densities—Toronto (866), Montréal (854), Vancouver (735), Kitchener (546), Hamilton (505), and Victoria (475)—were located close to United States border.
Facebook
TwitterMonaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.