Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Based on the degree of inequality in income distribution measured by the Gini coefficient, Colombia was the most unequal country in Latin America as of 2022. Colombia's Gini coefficient amounted to 54.8. The Dominican Republic recorded the lowest Gini coefficient at 37, even below Uruguay and Chile, which are some of the countries with the highest human development indexes in Latin America. The Gini coefficient explained The Gini coefficient measures the deviation of the distribution of income among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality. This measurement reflects the degree of wealth inequality at a certain moment in time, though it may fail to capture how average levels of income improve or worsen over time. What affects the Gini coefficient in Latin America? Latin America, as other developing regions in the world, generally records high rates of inequality, with a Gini coefficient ranging between 37 and 55 points according to the latest available data from the reporting period 2010-2023. According to the Human Development Report, wealth redistribution by means of tax transfers improves Latin America's Gini coefficient to a lesser degree than it does in advanced economies. Wider access to education and health services, on the other hand, have been proven to have a greater direct effect in improving Gini coefficient measurements in the region.
A high number of the countries with the highest income distribution levels are located in Eastern and Central Europe, with Slovakia topping the list, with an index of ****. On the other end of the scale, South Africa was the country with the lowest income distribution.
South Africa had the highest inequality in income distribution in 2024, with a Gini score of **. Its South African neighbor, Namibia, followed in second. The Gini coefficient measures the deviation of income (or consumption) distribution among individuals or households within a country from a perfectly equal distribution. A value of 0 represents absolute equality, and a value of 100 represents absolute inequality. All the 20 most unequal countries in the world were either located in Africa or Latin America & The Caribbean.
Income InequalityThe level of income inequality among households in a county can be measured using the Gini index. A Gini index varies between zero and one. A value of one indicates perfect inequality, where only one household in the county has any income. A value of zero indicates perfect equality, where all households in the county have equal income.The United States, as a country, has a Gini Index of 0.47 for this time period. For comparision in this map, the purple counties have greater income inequality, while orange counties have less inequality of incomes. For reference, Brazil has an index of 0.58 (relatively high inequality) and Denmark has an index of 0.24 (relatively low inequality).The 5-year Gini index for the U.S. was 0.4695 in 2007-2011 and 0.467 in 2006-2010. Appalachian Regional Commission, September 2013Data source: U.S. Census Bureau, 5-Year American Community Survey, 2006-2010 & 2007-2011
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 35.800 % in 2010. This records a decrease from the previous number of 37.700 % for 2005. Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 40.500 % from Dec 1985 (Median) to 2010, with 6 observations. The data reached an all-time high of 43.400 % in 1985 and a record low of 35.800 % in 2010. Tunisia TN: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Tunisia – Table TN.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Cross-national research on the causes and consequences of income inequality has been hindered by the limitations of existing inequality datasets: greater coverage across countries and over time is available from these sources only at the cost of significantly reduced comparability across observations. The goal of the Standardized World Income Inequality Database (SWIID) is to overcome these limitations. A custom missing-data algorithm was used to standardize the United Nations University's World Income Inequality Database and data from other sources; data collected by the Luxembourg Income Study served as the standard. The SWIID provides comparable Gini indices of gross and net income inequality for 192 countries for as many years as possible from 1960 to the present along with estimates of uncertainty in these statistics. By maximizing comparability for the largest possible sample of countries and years, the SWIID is better suited to broadly cross-national research on income inequality than previously available sources: it offers coverage double that of the next largest income inequality dataset, and its record of comparability is three to eight times better than those of alternate datasets. In any papers or publications that use the SWIID, authors are asked to cite the article of record for the data set and give the version number as follows: Solt, Frederick. 2016. "The Standardized World Income Inequality Database." Social Science Quarterly 97(5):1267-1281. SWIID Version 7.1, August 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Greece GR: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 36.000 % in 2015. This records an increase from the previous number of 35.800 % for 2014. Greece GR: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 34.600 % from Dec 2003 (Median) to 2015, with 13 observations. The data reached an all-time high of 36.200 % in 2012 and a record low of 32.800 % in 2003. Greece GR: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Greece – Table GR.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 39.700 % in 2016. This records a decrease from the previous number of 40.200 % for 2015. Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 42.400 % from Dec 1981 (Median) to 2016, with 13 observations. The data reached an all-time high of 46.400 % in 2007 and a record low of 39.700 % in 2016. Uruguay UY: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Uruguay – Table UY.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘GapMinder - Income Inequality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/psterk/income-inequality on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This analysis focuses on income inequailty as measured by the Gini Index* and its association with economic metrics such as GDP per capita, investments as a % of GDP, and tax revenue as a % of GDP. One polical metric, EIU democracy index, is also included.
The data is for years 2006 - 2016
This investigation can be considered a starting point for complex questions such as:
This analysis uses the gapminder dataset from the Gapminder Foundation. The Gapminder Foundation is a non-profit venture registered in Stockholm, Sweden, that promotes sustainable global development and achievement of the United Nations Millennium Development Goals by increased use and understanding of statistics and other information about social, economic and environmental development at local, national and global levels.
*The Gini Index is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measurement of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability.
The dataset contains data from the following GapMinder datasets:
"This democracy index is using the data from the Economist Inteligence Unit to express the quality of democracies as a number between 0 and 100. It's based on 60 different aspects of societies that are relevant to democracy universal suffrage for all adults, voter participation, perception of human rights protection and freedom to form organizations and parties. The democracy index is calculated from the 60 indicators, divided into five ""sub indexes"", which are:
The sub-indexes are based on the sum of scores on roughly 12 indicators per sub-index, converted into a score between 0 and 100. (The Economist publishes the index with a scale from 0 to 10, but Gapminder has converted it to 0 to 100 to make it easier to communicate as a percentage.)" https://docs.google.com/spreadsheets/d/1d0noZrwAWxNBTDSfDgG06_aLGWUz4R6fgDhRaUZbDzE/edit#gid=935776888
GDP per capita measures the value of everything produced in a country during a year, divided by the number of people. The unit is in international dollars, fixed 2011 prices. The data is adjusted for inflation and differences in the cost of living between countries, so-called PPP dollars. The end of the time series, between 1990 and 2016, uses the latest GDP per capita data from the World Bank, from their World Development Indicators. To go back in time before the World Bank series starts in 1990, we have used several sources, such as Angus Maddison. https://www.gapminder.org/data/documentation/gd001/
Capital formation is a term used to describe the net capital accumulation during an accounting period for a particular country. The term refers to additions of capital goods, such as equipment, tools, transportation assets, and electricity. Countries need capital goods to replace the older ones that are used to produce goods and services. If a country cannot replace capital goods as they reach the end of their useful lives, production declines. Generally, the higher the capital formation of an economy, the faster an economy can grow its aggregate income.
refers to compulsory transfers to the central governement for public purposes. Does not include social security. https://data.worldbank.org/indicator/GC.TAX.TOTL.GD.ZS
Gapminder is an independent Swedish foundation with no political, religious or economic affiliations. Gapminder is a fact tank, not a think tank. Gapminder fights devastating misconceptions about global development. Gapminder produces free teaching resources making the world understandable based on reliable statistics. Gapminder promotes a fact-based worldview everyone can understand. Gapminder collaborates with universities, UN, public agencies and non-governmental organizations. All Gapminder activities are governed by the board. We do not award grants. Gapminder Foundation is registered at Stockholm County Administration Board. Our constitution can be found here.
Thanks to gapminder.org for organizing the above datasets.
Below are some research questions associated with the data and some initial conclusions:
Research Question 1 - Is Income Inequality Getting Worse or Better in the Last 10 Years?
Answer:
Yes, it is getting better, improving from 38.7 to 37.3
On a continent basis, all were either declining or mostly flat, except for Africa.
Research Question 2 - What Top 10 Countries Have the Lowest and Highest Income Inequality?
Answer:
Lowest: Slovenia, Ukraine, Czech Republic, Norway, Slovak Republic, Denmark, Kazakhstan, Finland, Belarus,Kyrgyz Republic
Highest: Colombia, Lesotho, Honduras, Bolivia, Central African Republic, Zambia, Suriname, Namibia, Botswana, South Africa
Research Question 3 Is a higher tax revenue as a % of GDP associated with less income inequality?
Answer: No
Research Question 4 - Is Higher Income Per Person - GDP Per Capita associated with less income inequality?
Answer: No, but weak negative correlation.
Research Question 5 - Is Higher Investment as % GDP associated with less income inequality?
Answer: No
Research Question 6 - Is Higher EIU Democracy Index associated with less income inequality?
Answer: No, but weak negative correlation.
The above results suggest that there are other drivers for the overall reduction in income inequality. Futher analysis of additional factors should be undertaken.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 31 countries was 31.37 index points. The highest value was in Turkey: 44.4 index points and the lowest value was in Slovakia: 24.1 index points. The indicator is available from 1963 to 2023. Below is a chart for all countries where data are available.
Dataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.
The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.
Aggregate data [agg]
Out of the G20 countries, South Africa, Brazil, and Turkey have the highest levels of income inequality, while France, Canada, and Germany have the lowest levels of inequality. Other G20 countries in the middle have Gini coefficients between 32.5 and 44.0. The Gini coefficient measures the level of income inequality worldwide, where a higher score indicates a higher level of income inequality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Laos LA: Gini Coefficient (GINI Index): World Bank Estimate data was reported at 36.400 % in 2012. This records an increase from the previous number of 35.400 % for 2007. Laos LA: Gini Coefficient (GINI Index): World Bank Estimate data is updated yearly, averaging 34.900 % from Dec 1992 (Median) to 2012, with 5 observations. The data reached an all-time high of 36.400 % in 2012 and a record low of 32.600 % in 2002. Laos LA: Gini Coefficient (GINI Index): World Bank Estimate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank.WDI: Poverty. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Adopting a cross-regional and global perspective, this article critically evaluates one of the core assertions of political economy approaches to welfare—that support for redistribution is inversely related to income. We hypothesize that economic self-interest gives way to more uniform support for redistribution in the interest of ensuring that basic or relative needs are met in less developed and highly unequal societies. To test this hypothesis, we analyze individual-level surveys combined with country-level indicators for more than 50 countries between 1984 and 2004. Our analysis shows that individual-level income does not systematically explain support for redistribution in countries with low levels of economic development or high levels of income inequality. These findings challenge the universality of the assumption of economic self-interest in shaping preferences for redistribution that has been so pervasive in the literature.
The OECD Income Distribution database (IDD) has been developed to benchmark and monitor countries' performance in the field of income inequality and poverty. It contains a number of standardised indicators based on the central concept of "equivalised household disposable income", i.e. the total income received by the households less the current taxes and transfers they pay, adjusted for household size with an equivalence scale. While household income is only one of the factors shaping people's economic well-being, it is also the one for which comparable data for all OECD countries are most common. Income distribution has a long-standing tradition among household-level statistics, with regular data collections going back to the 1980s (and sometimes earlier) in many OECD countries.
Achieving comparability in this field is a challenge, as national practices differ widely in terms of concepts, measures, and statistical sources. In order to maximise international comparability as well as inter-temporal consistency of data, the IDD data collection and compilation process is based on a common set of statistical conventions (e.g. on income concepts and components). The information obtained by the OECD through a network of national data providers, via a standardized questionnaire, is based on national sources that are deemed to be most representative for each country.
Small changes in estimates between years should be treated with caution as they may not be statistically significant.
Fore more details, please refer to: https://www.oecd.org/els/soc/IDD-Metadata.pdf and https://www.oecd.org/social/income-distribution-database.htm
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Linear regression of the gap between low and high income groups on PC strength indicators, and in the second linear regression controlling for the GINI index for income inequality.
Goal 10Reduce inequality within and among countriesTarget 10.1: By 2030, progressively achieve and sustain income growth of the bottom 40 per cent of the population at a rate higher than the national averageIndicator 10.1.1: Growth rates of household expenditure or income per capita among the bottom 40 per cent of the population and the total populationSI_HEI_TOTL: Growth rates of household expenditure or income per capita (%)Target 10.2: By 2030, empower and promote the social, economic and political inclusion of all, irrespective of age, sex, disability, race, ethnicity, origin, religion or economic or other statusIndicator 10.2.1: Proportion of people living below 50 per cent of median income, by sex, age and persons with disabilitiesSI_POV_50MI: Proportion of people living below 50 percent of median income (%)Target 10.3: Ensure equal opportunity and reduce inequalities of outcome, including by eliminating discriminatory laws, policies and practices and promoting appropriate legislation, policies and action in this regardIndicator 10.3.1: Proportion of population reporting having personally felt discriminated against or harassed in the previous 12 months on the basis of a ground of discrimination prohibited under international human rights lawVC_VOV_GDSD: Proportion of population reporting having felt discriminated against, by grounds of discrimination, sex and disability (%)Target 10.4: Adopt policies, especially fiscal, wage and social protection policies, and progressively achieve greater equalityIndicator 10.4.1: Labour share of GDPSL_EMP_GTOTL: Labour share of GDP (%)Indicator 10.4.2: Redistributive impact of fiscal policySI_DST_FISP: Redistributive impact of fiscal policy, Gini index (%)Target 10.5: Improve the regulation and monitoring of global financial markets and institutions and strengthen the implementation of such regulationsIndicator 10.5.1: Financial Soundness IndicatorsFI_FSI_FSANL: Non-performing loans to total gross loans (%)FI_FSI_FSERA: Return on assets (%)FI_FSI_FSKA: Regulatory capital to assets (%)FI_FSI_FSKNL: Non-performing loans net of provisions to capital (%)FI_FSI_FSKRTC: Regulatory Tier 1 capital to risk-weighted assets (%)FI_FSI_FSLS: Liquid assets to short term liabilities (%)FI_FSI_FSSNO: Net open position in foreign exchange to capital (%)Target 10.6: Ensure enhanced representation and voice for developing countries in decision-making in global international economic and financial institutions in order to deliver more effective, credible, accountable and legitimate institutionsIndicator 10.6.1: Proportion of members and voting rights of developing countries in international organizationsSG_INT_MBRDEV: Proportion of members of developing countries in international organizations, by organization (%)SG_INT_VRTDEV: Proportion of voting rights of developing countries in international organizations, by organization (%)Target 10.7: Facilitate orderly, safe, regular and responsible migration and mobility of people, including through the implementation of planned and well-managed migration policiesIndicator 10.7.1: Recruitment cost borne by employee as a proportion of monthly income earned in country of destinationIndicator 10.7.2: Number of countries with migration policies that facilitate orderly, safe, regular and responsible migration and mobility of peopleSG_CPA_MIGRP: Proportion of countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (%)SG_CPA_MIGRS: Countries with migration policies to facilitate orderly, safe, regular and responsible migration and mobility of people, by policy domain (1 = Requires further progress; 2 = Partially meets; 3 = Meets; 4 = Fully meets)Indicator 10.7.3: Number of people who died or disappeared in the process of migration towards an international destinationiSM_DTH_MIGR: Total deaths and disappearances recorded during migration (number)Indicator 10.7.4: Proportion of the population who are refugees, by country of originSM_POP_REFG_OR: Number of refugees per 100,000 population, by country of origin (per 100,000 population)Target 10.a: Implement the principle of special and differential treatment for developing countries, in particular least developed countries, in accordance with World Trade Organization agreementsIndicator 10.a.1: Proportion of tariff lines applied to imports from least developed countries and developing countries with zero-tariffTM_TRF_ZERO: Proportion of tariff lines applied to imports with zero-tariff (%)Target 10.b: Encourage official development assistance and financial flows, including foreign direct investment, to States where the need is greatest, in particular least developed countries, African countries, small island developing States and landlocked developing countries, in accordance with their national plans and programmesIndicator 10.b.1: Total resource flows for development, by recipient and donor countries and type of flow (e.g. official development assistance, foreign direct investment and other flows)DC_TRF_TOTDL: Total assistance for development, by donor countries (millions of current United States dollars)DC_TRF_TOTL: Total assistance for development, by recipient countries (millions of current United States dollars)DC_TRF_TFDV: Total resource flows for development, by recipient and donor countries (millions of current United States dollars)Target 10.c: By 2030, reduce to less than 3 per cent the transaction costs of migrant remittances and eliminate remittance corridors with costs higher than 5 per centIndicator 10.c.1: Remittance costs as a proportion of the amount remittedSI_RMT_COST: Remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_BC: Corridor remittance costs as a proportion of the amount remitted (%)SI_RMT_COST_SC: SmaRT corridor remittance costs as a proportion of the amount remitted (%)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Brazos Country, TX, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brazos Country median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Town And Country, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Town And Country median household income. You can refer the same here
Comparing the *** selected regions regarding the gini index , South Africa is leading the ranking (**** points) and is followed by Namibia with **** points. At the other end of the spectrum is Slovakia with **** points, indicating a difference of *** points to South Africa. The Gini coefficient here measures the degree of income inequality on a scale from * (=total equality of incomes) to *** (=total inequality).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than *** countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).