Web map used in Delaware County GIS Data Extract application that allows users to extract Delaware County, Ohio GIS data in various formats.
Since 1987, the University of Delaware has prepared GIS-based Water Resource Protection Area (WRPA) mapping for New Castle County that serves to protect the quality and quantity of ground and surface water supplies as part of the Unified Development Code (UDC). The WRPA program is enabled under Section 10 (Environmental Standards) of the UDC for New Castle County. The intent of the ordinances is to protect the quality and quantity of surface water and groundwater supplies through the protection of environmentally sensitive areas important to the state’s water supply. Under the UDC, all development within recharge, wellhead, Cockeysville formation, and reservoir water resource protection areas are required to meet maximum impervious cover thresholds (20–50%) and may require groundwater recharge facilities, water monitoring, and water management facilities. Presently, over 20 percent of New Castle County’s land area is protected by the WRPA provisions of the UDC. UDWRC's 2022 GIS based mapping updates represent the sixth revision to the maps. These maps depict several data layers that represent the four main WRPA categories in New Castle County, Delaware–Cockeysville Formation, Wellhead WRPA, Surface Water WRPA, and Recharge WRPA. The maps serve as a guide for development and assist decision-making in New Castle County, Delaware. The WRPA data will soon be available for download at Delaware FirstMap and PDF versions of the maps are available on the UDWRC website.
County boundaries (polygon features) for Pennsylvania, New Jersey, Delaware, Maryland, New York, Connecticut, and the District of Columbia. Original Sources: PA - PennDOT NJ - NJOIT DE - DE Geological Survey MD, NY, CT, DC - ESRI Linework has been adjusted using the following methodology. NJ's boundaries overrode PA, since NJ's were highly accurate. PA overrode MD since PennDOT's were more accurate than ESRI's, and DE overrode PA & MD, since the "arc" of northernmost DE was a bit more accurate than PennDOT's or our original county boundaries. County boundaries in the DVRPC region have been adjusted to align with parcel data (where appropriate). NOTE: Use the following definition query if only need one county in DVRPC Region "Co_Name" LIKE '%Bucks%'
The Digital Surficial Geologic-GIS Map of Upper Delaware Scenic and Recreational River, New York and Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (upde_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (upde_surficial_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (upde_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (upde_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (upde_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (upde_surficial_geology_metadata_faq.pdf). Please read the upde_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey, New York State Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (upde_surficial_geology_metadata.txt or upde_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000.
Geospatial data about Sussex County, Delaware Parcels. Export to CAD, GIS, PDF, CSV and access via API.
description: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection (Zone 15) and coordinate system.; abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection (Zone 15) and coordinate system.
Geospatial data about Kent County, Delaware Contours. Export to CAD, GIS, PDF, CSV and access via API.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The TIGER/Line shapefiles include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state but may extend across county and county subdivision boundaries. An incorporated place is usually a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs are often defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The boundaries of most incorporated places in this shapefile are as of January 1, 2024, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census, but some CDPs were added or updated through the 2024 BAS as well.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
description: Geology, Surficial dataset current as of 2006. Geology of Kent County, Delaware: DGS Geologic Map No. 14.; abstract: Geology, Surficial dataset current as of 2006. Geology of Kent County, Delaware: DGS Geologic Map No. 14.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1)
The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The generalized BG boundaries in this release are based on those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information.
This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This data is hosted at, and may be downloaded or accessed from PASDA, the Pennsylvania Spatial Data Access Geospatial Data Clearinghouse http://www.pasda.psu.edu/uci/DataSummary.aspx?dataset=291
Delaware County Drainage System.IMPORTANT: this layer was created from historic township-scale hard copy maps and is not warranted against the accuracy of the locations shown. You MUST contact the County Surveyor's office for detailed information on the location of legal rains - especially underground drainage systems. Underground systems shown in the dataset are not field located and cannot be used for excavation planning.
This dataset is the spatial representation of the 2400+ bridge locations throughout the State of Delaware with associated attribute information such as number, type of material, length, width, and maintenance responsibility. Bridge locations are represented by points that have been digitized and corrected with the use of orthophotography.
© DelDOT Bridge
This map shows the surficial geology of Delaware, at a scale of 1:100,000. Sussex County is not published as yet so that county is mapped as Sand for the time being. Maps at this scale are useful for viewing general geologic framework on a county-wide basis, determining the geology of watersheds, and recognizing the relationship of geology to regional or county-wide environmental or land-use issues.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Web map used in Delaware County GIS Data Extract application that allows users to extract Delaware County, Ohio GIS data in various formats.