Facebook
TwitterCOB_POLY: This theme shows the jurisdictional and cartographic county areas for Oregon and Washington. The POCA layer is an integrated set of geographic- referencing data covering the state of Washington. It is derived from land surveys, DNR orthophotos, USGS 7.5' quadrangles, and DNR tract books.
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally- recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2019, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs, delineated in 20 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
Facebook
TwitterThe 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. In MCD states where no MCD exists or no MCD is defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The generalized boundaries of legal MCDs are based on those as of January 1, 2020 as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CCDs, delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Facebook
TwitterCOB_ARC: This theme shows line representation of the jurisdictional and cartographic county perimeters for Oregon and Washington.
Facebook
TwitterExtreme temperatures can vary greatly across communities due to differences in land use, shade availability, proximity to water, and elevation. Spatially detailed estimates of temperature are difficult to find - often they are stations that are not regularly spaced or are from satellite observations, which estimate only the surface temperature, which can be quite different from air temperature. The PRISM Climate Group at the Oregon State University have developed an 800-meter resolution climatology of temperature for the United States that provides enough detail for intra-city temperature comparisons. It is created by a downscaling model, Parameter-elevation Regressions on Independent Slopes Model (PRISM).The 1991-2020 climate normal for maximum temperature for the month of July was downloaded and analyzed in ArcGIS Pro. Zonal Statistics provide min, max, and mean summaries for county and census tracts (2020 version) geometries. All temperatures were converted from degrees Celsius to Fahrenheit. Additionally, in each layer the mean of the maximum temperature analysis for the next order of geometry is provided (e.g., county data in the tracts layer), which allows comparison of the observed temperature to a larger geographic average. Data Source: https://www.prism.oregonstate.edu/normals/Citation: PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 10 June 2022, accessed 10 June 2022
Facebook
TwitterTo access the tax lot layer you will need to contact the county Assessor's office. ORMAP is a statewide digital cadastral base map that is publicly accessible, continually maintained, supports the Oregon property tax system, supports a multi-purpose land information system, strives to comply with appropriate state and national standards, and will continue to be improved over time.
Facebook
TwitterThis data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThis data contains the location and legend of mileposts markers (signs) on state owned highways.This GIS base layer can be used for planning purposes and as a reference layer on standard Oregon Department of Transportation (ODOT) city and county map formats. Full details: https://geohub-oregon-geo.hub.arcgis.com/datasets/oregon-geo::mileposts/about
Facebook
TwitterThe Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk Information And supporting data used to develop the risk data. The primary risk; classificatons used are the 1-percent-annual-chance flood event, the 0.2-percent- annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000.
Facebook
TwitterThe Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.
Facebook
TwitterUse the app to find the downloadable area within Jackson County - 2 Foot Contour MapThe 2-foot Contour Map shows contours that were derived from several different LiDAR projects in the Rogue Valley over the last 10 years. The map can be used to both download and view the contour data. To use the map, search or zoom in to an address. When zoomed in to a specific scale, the map will change from the downloadable areas layer to 2-foot interval contour lines. The LiDAR Project Dates layer can be used to identify the date when the elevation was collected in an area. Please note that data is available only for the valley floor areas at this time.The 2ft contours were created from 1-meter pixel DEM and then cleaned to remove very small elevation changes and to create a smooth contour line. This information should not be used to create topographic surveys or other applications where the precise elevation of a location is required. For additional information on LiDAR in Oregon or to download the source data, please visit the DOGAMI Lidar Viewer.The downloadable data is a zipped ESRI Shapefile and is projected to Oregon State Plane South (Intl Feet) with NAD 1983 datum.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a dataset download, not a document. The Open button will start the download.This data layer is an element of the Oregon GIS Framework. The Oregon Biodiversity Information Center (ORBIC), part of the Institute for Natural Resources (INR) within the Oregon University System, has been the steward of Oregon’s protected areas data since 1989. This data is incorporated into the NavigatOR GIS utility and the national US protected areas database maintained by the U.S. Geological Survey. New data in Oregon on conservation easements and newly developed protected area maps from local land trusts and County and City governments were incorporated in 2011-2013. The result is a very comprehensive map and protected areas database for Oregon. Updates and edits will continue to be made to improve the dataset.
Facebook
Twitterdescription: This theme delineates Urban Growth Boundaries (UGBs) in the state of Oregon. Oregon land use laws limit development outside of urban growth boundaries. The line work was created by various sources including the Oregon Department of Land Conservation and Development (DLCD), the Oregon Department of Transportation (ODOT), Metro Regional Council of Governments (Metro), county and city GIS departments, and the Oregon Department of Administrative Services - Geospatial Enterprise Office (DAS-GEO).Urban growth boundaries (UGBs) are lines drawn on planning and zoning maps to show where a city expects to experience growth for the next 20 years. UGBs were established under Oregon Statewide Planning Goals in 1973 by the Oregon State Legislature (Senate Bill 100). Source: Dept. of Land Conservation and Development, 1:24,000 (2015).; abstract: This theme delineates Urban Growth Boundaries (UGBs) in the state of Oregon. Oregon land use laws limit development outside of urban growth boundaries. The line work was created by various sources including the Oregon Department of Land Conservation and Development (DLCD), the Oregon Department of Transportation (ODOT), Metro Regional Council of Governments (Metro), county and city GIS departments, and the Oregon Department of Administrative Services - Geospatial Enterprise Office (DAS-GEO).Urban growth boundaries (UGBs) are lines drawn on planning and zoning maps to show where a city expects to experience growth for the next 20 years. UGBs were established under Oregon Statewide Planning Goals in 1973 by the Oregon State Legislature (Senate Bill 100). Source: Dept. of Land Conservation and Development, 1:24,000 (2015).
Facebook
TwitterThis data layer is an element of the Oregon GIS Framework. This theme delineates Urban Growth Boundaries (UGBs) in the state of Oregon. Oregon land use laws limit development outside of urban growth boundaries. The line work was created by various sources including the Oregon Department of Land Conservation and Development (DLCD), the Oregon Department of Transportation (ODOT), Metro Regional Council of Governments (Metro), county and city GIS departments, and the Oregon Department of Administrative Services - Geospatial Enterprise Office (DAS-GEO). Urban growth boundaries (UGBs) are lines drawn on planning and zoning maps to show where a city expects to experience growth for the next 20 years. UGBs were established under Oregon Statewide Planning Goals in 1973 by the Oregon State Legislature (Senate Bill 100). Goal 14 specifically deals with UGBs (OAR 660-15-0000(4)). Other specific ORS that relate to the designation and delineation of UGBs are: 197.626 Expanding urban growth boundary and designating urban reserve area subject to periodic review. A city with a population of 2,500 or more within its urban growth boundary that amends the urban growth boundary to include more than 50 acres or that designates urban reserve areas under ORS 195.145 shall submit the amendment or designation to the Land Conservation and Development Commission in the manner provided for periodic review under ORS 197.628 to 197.650. [1999 c.622 §14; 2001 c.672 §10] and 197.628 Periodic review; policy; conditions that indicate need for periodic review.(1) It is the policy of the State of Oregon to require the periodic review of comprehensive plans and land use regulations in order to respond to changes in local, regional and state conditions to ensure that the plans and regulations remain in compliance with the statewide planning goals adopted pursuant to ORS 197.230, and to ensure that the plans and regulations make adequate provision for needed housing, employment, transportation and public facilities and services. Determining UGBs in Oregon is done based on input from city and county governments. Such special districts as public safety and utilities also participate because they provide important services. Local citizens and other interested people also provide input at public hearings, and by voting. After local governments determine the UGB, they submit a Post Acknowledgement Plan Amendment and the state Department of Land Conservation and Development (DLCD) reviews it for consistency with Goal 14. As part of this process jurisdictions send GIS files to DLCD highlighting the amended area. UGBs that are currently in the appeal process at the time of publication are not included. The effDate attribute is populated to indicate the data version and year in which the UGB was updated. UGB amendments are verified with DLCD’s Post Acknowledgement Plan Amendment (PAPA) database to ensure that all UGB updates reported to DLCD have been included in this data. In 2019 DLCD acknowledged amendments to the following UGBs: Madras, Mill City, Redmond, Springfield and Stanfield.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Scoggins Dam in northwest Oregon lies within the Gales Creek fault zone (GCF), a northwest-striking system of active faults forming the boundary between the Coast Range and the Tualatin Valley about 25 km east of Portland, Oregon. Geologic mapping published in 2020 shows the dam to lie within a block-faulted releasing stepover between the right-lateral, NW-striking Scoggins Creek and Parsons Creek strands of the GCF. The Scoggins Creek strand is presently mapped beneath the existing dam about 200 m north of the south abutment. Preliminary results from paleoseismic trenching by the U.S. Bureau of Reclamation, Portland State University, and the U.S. Geological Survey indicate that these two major fault strands have had multiple surface rupturing earthquakes in the Holocene. To confirm the accuracy of the 2020 geologic map and the geometry of the GCF in the releasing stepover region, we completed additional geologic mapping of the dam, reservoir, and an alternative dam site downstrea ...
Facebook
TwitterThis dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Facebook
TwitterThis database and accompanying plot files depict the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes. In addition, this map does not take the place of fault-rupture hazard zones designated by the Oregon State Geologist. Similarly, the database cannot be used to identify or delineate landslides in the region.
This digital map database, largely compiled from new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Roseburg 30 x 60 minute quadrangle along the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains. Together with the accompanying text files as PDF (rb_geol.pdf), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps is 1:24,000, but the Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller.
Facebook
TwitterThis Zoning feature class is an element of the Oregon GIS Framework statewide, Zoning spatial data. This version is authorized for public use. Attributes include zoning districts that have been generalized to state classes. As of June 30, 2023, this feature class contains zoning data from 229 local jurisdictions. DLCD plans to continue adding to and updating this statewide zoning dataset as they receive zoning information from the local jurisdictions. Jurisdictions included in the latest version of the statewide zoning geodatabase:
Cities: Adams, Adrian, Albany, Amity, Antelope, Ashland, Astoria, Athena, Aurora, Banks, Barlow, Bay City, Beaverton, Bend, Boardman, Bonanza, Brookings, Brownsville, Burns, Butte Falls, Canby, Cannon Beach, Carlton, Cascade Locks, Cave Junction, Central Point, Chiloquin, Coburg, Columbia City, Coos Bay, Cornelius, Corvallis, Cottage Grove, Creswell, Culver, Dayton, Detroit, Donald, Drain, Dufur, Dundee, Dunes City, Durham, Eagle Point, Echo, Enterprise, Estacada, Eugene, Fairview, Falls City, Florence, Forest Grove, Fossil, Garibaldi, Gaston, Gates, Gearhart, Gervais, Gladstone, Gold Beach, Gold Hill, Grants Pass, Grass Valley, Gresham, Halsey, Happy Valley, Harrisburg, Helix, Hermiston, Hillsboro, Hines, Hood River, Hubbard, Idanha, Independence, Jacksonville, Jefferson, Johnson City, Jordan Valley, Junction City, Keizer, King City, Klamath Falls, La Grande, La Pine, Lafayette, Lake Oswego, Lebanon, Lincoln City, Lowell, Lyons, Madras, Malin, Manzanita, Maupin, Maywood Park, McMinnville, Medford, Merrill, Metolius, Mill City, Millersburg, Milton-Freewater, Milwaukie, Mitchell, Molalla, Monmouth, Moro, Mosier, Mount Angel, Myrtle Creek, Myrtle Point, Nehalem, Newberg, Newport, North Bend, North Plains, Nyssa, Oakridge, Ontario, Oregon City, Pendleton, Philomath, Phoenix, Pilot Rock, Port Orford, Portland, Prescott, Prineville, Rainier, Redmond, Reedsport, Rivergrove, Rockaway Beach, Rogue River, Roseburg, Rufus, Saint Helens, Salem, Sandy, Scappoose, Scio, Scotts Mills, Seaside, Shady Cove, Shaniko, Sheridan, Sherwood, Silverton, Sisters, Sodaville, Spray, Springfield, Stanfield, Stayton, Sublimity, Sutherlin, Sweet Home, Talent, Tangent, The Dalles, Tigard, Tillamook, Toledo, Troutdale, Tualatin, Turner, Ukiah, Umatilla, Vale, Veneta, Vernonia, Warrenton, Wasco, Waterloo, West Linn, Westfir, Weston, Wheeler, Willamina, Wilsonville, Winston, Wood Village, Woodburn, Yamhill.
Counties: Baker County, Benton County, Clackamas County, Clatsop County, Columbia County, Coos County, Crook County, Curry County, Deschutes County, Douglas County, Harney County, Hood River County, Jackson County, Jefferson County, Josephine County, Klamath County, Lane County, Lincoln County, Linn County, Malheur County, Marion County, Multnomah County, Polk County, Sherman County, Tillamook County, Umatilla County, Union County, Wasco County, Washington County, Wheeler County, Yamhill County.
R emaining jurisdictions either chose not to share data to incorporate into the public, statewide dataset or did not respond to DLCD’s request for data. These jurisdictions’ attributes are designated “not shared” in the orZDesc field and “NS” in the orZCode field.
Facebook
TwitterThe State Land Inventory System is a collaborative effort with participation from all land-owning State of Oregon agencies. The data available in the map is the most current published statewide dataset for State of Oregon land ownership. The State Land Inventory System tracks land that has been assigned a tax lot by County Assessor's Offices, and also tracks State mineral ownership. The data does not include public rights of way (highways, roads and streets) or waterbodies which have not been assigned a tax lot by a County Assessor. While efforts have been made to ensure the accuracy of the data, the managing agency for any individual parcel should be contacted to verify land ownership and boundaries.Contact information for each agency can be found here:https://www.oregon.gov/pages/a_to_z_listing.aspx
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.
Facebook
TwitterCOB_POLY: This theme shows the jurisdictional and cartographic county areas for Oregon and Washington. The POCA layer is an integrated set of geographic- referencing data covering the state of Washington. It is derived from land surveys, DNR orthophotos, USGS 7.5' quadrangles, and DNR tract books.