This dataset was created by the Transportation Planning and Programming (TPP) Division of the Texas Department of Transportation (TxDOT) for planning and asset inventory purposes, as well as for visualization and general mapping. County boundaries were digitized by TxDOT using USGS quad maps, and converted to line features using the Feature to Line tool. This dataset depicts a generalized coastline.Update Frequency: As NeededSource: Texas General Land OfficeSecurity Level: PublicOwned by TxDOT: FalseRelated LinksData Dictionary PDF [Generated 2025/03/14]
This map contains the 4 Regional Areas: Border and Permian Basin, Central Texas, Coastal and East Texas, North Central and West Texas and the 16 Regions of the TCEQ. The areas for this data was obtained from TXDOT county boundaries (no coastal detail). General purpose use is to delineate TCEQ Region boundaries on maps and other products. Originating feature class was digitized by TXDOT at 1:24,000 using DRGs (USGS Topos) in the NAD 83 Datum.
Hurricane Harvey made landfall near Rockport, Texas on August 25 as a category 4 hurricane with wind gusts exceeding 150 miles per hour. As Harvey moved inland the forward motion of the storm slowed down and produced tremendous rainfall amounts to southeastern Texas and southwestern Louisiana. Historic flooding occurred in Texas and Louisiana as a result of the widespread, heavy rainfall over an 8-day period in Louisiana in August and September 2017. Following the storm event, U.S. Geological Survey (USGS) hydrographers recovered and documented 2,123 high-water marks in Texas, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of Texas that experienced flooding in August and September, 2017.
The mapped area boundary, flood inundation extents, depth rasters, and coastal surge layer were created to provide an estimated extent of flood inundation in Coastal basins including East and West Matagorda Bay Subbasins, East and West San Antonio Bay Subbasins, and Aransas Bay Subbasin, Texas. The mapped area of the Coastal basins were separated into three sections based on the availability and location of high-water marks. The maps of the eastern part of the East Matagorda Bay Subbasin include a 17-mi reach of Peyton Creek and a 16-mi reach of Big Boggy Creek, and flood-inundation map for 6-mi reach of Little Boggy Creek in Matagorda County. The maps of the western part of East Matagorda Bay Subbasin include a 13.5-mi reach of West Carancahua Creek, 14.5-mi reach of East Carancahua Creek, and 9.6-mi reach of Keller Creek within Matagorda, Jackson, and Calhoun Counties. The maps of the middle part of the East Matagorda Bay Subbasin are for a 21-mi reach of the Tres Palacios River within Matagorda County. These geospatial data include the following items: 1. bnd_emb1, bnd_emb2, and bnd_tres_palacios; shapefiles containing the polygon showing the mapped area boundary for the Coastal basins flood maps, 2. hwm_emb_1, hwm_emb2, and hwm_tres_palacios; shapefiles containing high-water mark points used for inundation maps, 3. polygon_emb1, polygon_emb_2, and polygon_tres_palacios; shapefiles containing mapped extent of flood inundation for the Coastal basins, derived from the water-surface elevation surveyed at high-water marks, 4. depth_emb1, depth_emb2, and depth_tres; raster files for the flood depths derived from the water-surface elevation surveyed at high-water marks, and 5. coastal_surge.lyr; a layer file generated from the depth raster depicting water height above ground recorded at the high-water marks. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012).
The HWM elevation data from the USGS Short-tern Network (STN) was used to create the flood water-surface raster file (U.S. Geological Survey [USGS], 2018, Short-Term Network Data Portal: USGS flood information web page, accessed February 13, 2018, at https://water.usgs.gov/floods/FEV.). The water-surface raster was the basis for the creation of the final flood inundation polygon and depth layer to support the development of flood inundation map for the Federal Emergency Management Agency's (FEMA) response and recovery operations.
The SPATIAL LOCATION of railroads/ is based upon locations as given in the National Transportation Atlas Database (United States Department of Transportation, Bureau of Transportation Statistics) and contemporary and historical U.S. topographical maps (United States Department of the Interior, U.S. Geological Survey)./The EXISTENCE of a railroad serving locations at a specific date (see variable "InOpBy") was determined using the following resources: 1911: state maps from William D. Whitney and Benjamin E. Smith (eds) The Century dictionary and cyclopedia, with a new atlas of the world, New York: Century Co., 1911 (using scanned images from http://www.goldbug.com); 1903: regional maps from Rand McNally, Rand McNally & Co.'s Enlarged Business Atlas And Shippers' Guide ... Showing In Detail The Entire Railroad System ... Accompanied By A New And Original Compilation And Ready Reference Index…, Chicago: Rand McNally & Company, 1903 (using images 2844006, 2844007 and 2844008 from http://www.davidrumey.com); 1898: regional maps from Rand McNally, United States. Rand, McNally & Co., Map Publishers and Engravers, Chicago, 1898. Rand, McNally & Co.'s New Business Atlas Map of the United States…, Chicago: Rand McNally & Company, 1898 (using images 0772003, 0772004 and 0772005 from http://www.davidrumey.com); 1893: state maps from Rand McNally and Company, Rand, McNally & Co.'s enlarged business atlas and shippers guide ; containing large-scale maps of all the states and territories in the United States, of the Dominion of Canada, the Republic of Mexico, Central America, the West Indies and Cuba. Chicago: Rand McNally, 1893 (images courtesy of Murray Hudson, www.antiquemapsandglobes.com) except for Louisiana, Maryland/Delaware, Michigan, and Mississippi which were taken from Rand McNally, Universal Atlas of the World, Chicago: Rand McNally, 1893 (images courtesy of the University of Alabama Cartographic Lab) and Texas which was digitized by Amanda Gregg from Rand McNally & Co. Indexed county and railroad pocket map and shippers' guide of Texas : accompanied by a new and original compilation and ready reference index, showing in detail the entire railroad system ...Chicago: Rand McNally & Co., c1893 (Yale University Beinecke Library, Call Number: Zc52 893ra); 1889: state maps from Rand McNally, Rand, McNally & Co.'s enlarged business atlas and shippers guide…, Chicago: Rand McNally & Co., 1889 (using images 2094016 through 2094062 from http://www.davidrumey.com); 1881: state maps from Rand McNally, New Indexed Business Atlas and Shippers Guide, Chicago: Rand McNally & Co., 1881 (photographed by Amanda Gregg from a copy in the Yale University Beinecke Library, 2009 Folio 63); 1877: state maps from Rand McNally and Company, Rand McNally & Co’s Business Atlas, Chicago: Rand McNally & Co., 1877 (digitized by Matthew Van den Berg from a copy in the Library of Congress, Call no. G1200 .R3358 1877); 1872: regional maps from Warner & Beers, Atlas of the United States, Chicago: Warner & Beers, 1872 (using images 2585069 through 2585078 from http://www.davidrumey.com);1868: national map by J. T. Lloyd, Lloyd's New Map of the United States The Canadas and New Brunswick From The Latest Surveys Showing Every Railroad & Station Finished … 1868, New York: J. T. Lloyd, 1868 (using image 2859002 from http://www.davidrumey.com)1863: national map by J. T. Lloyd, Lloyd's New Map of the United States The Canadas And New Brunswick From the latest Surveys Showing Every Railroad & Station Finished to June 1863, New York: J. T. Lloyd, 1863 (using image 2591002 from http://www.davidrumey.com)1861: regional maps by G. R. Taylor and Irene D. Neu, The American Railroad Network 1861-1890, Cambridge, Mass: Harvard University Press, 1956;1858: national map by Hugo Stammann, J. Sage & Son's new & reliable rail road map comprising all the railroads of the United States and Canadas with their stations and distances, Buffalo, NY: J Sage & Sons, 1858 using image rr000360 from the Library of Congress at http://hdl.loc.gov/loc.gmd/g3701p.rr000360;1856: national map by Richard S. Fisher, Dinsmore's complete map of the railroads & canals in the United States & Canada carefully compiled from authentic sources by Richard S. Fisher, editor of the American Rail Road & Steam Navigation Guide, New York, 1856 using image rr000300 from the Library of Congress at http://hdl.loc.gov/loc.gmd/g3701p.rr000300;1854: national map by E. D. Sanford, H. V. Poor's rail road map showing particularly the location and connections of the North East & South West Alabama Rail Road, by E. D. Sanford, Civil Engineer, n.p.: 1854 using image rr004950 from the Library of Congress at http://hdl.loc.gov/loc.gmd/g3701p.rr004950;1852: national map by J. H. Colton, Colton's Map Of The United States, The Canadas &c. Showing The Rail Roads, Canals & Stage Roads: With Distances from Place to Place, New York: J. H. Colton, 1852 (using image 0172002 from http://www.davidrumey.com)1850 and earlier dates: Curran Dinsmore, Dinsmore & Company's new and complete map of the railway system of the United States and Canada; compiled from official sources, under the direction of the editor of the "American Railway Guide.", New York: 1850, the early railroad database assembled by Professor Milton C. Hallberg (deceased, Pensylvania State University) and appearing on http://oldrailhistory.com/, various railroad histories, on-line google search results and Wikipedia entries for specific railroads appearing in Hallberg’s database. Digitized maps were geo-referenced using ArcGIS 10’s spline algorithm against the National Historical Geographic Information System’s 2009 TIGER-based historical state and county boundary files (see www.nhgis.org) and the U.S. National Atlas’s database of cities and town.No effort was made to identify or preserve double tracking. Sidings, yards, and turnouts, etc., were deleted whenever possible absent any knowledge as to when these features were constructed.See Jeremy Atack "Procedures and Issues Relating to the Creration of Historical Transportation Shapfiles of Navigabale Rivers, Canals, and Railroads in the United States" available at https://my.vanderbilt.edu/jeremyatack/files/2015/09/HistoricalTransportationSHPfilesDocumenation.pdf. Also Jeremy Atack, "On the Use of Geographic Informations Systems in Economic History" Journal of Economic History, 73:2 (June 2013): 313-338. Also available at https://my.vanderbilt.edu/jeremyatack/files/2011/08/EHAPresidentialAddress.pdfRevision History: Edited = 1 ==> minor modifications by Jeremy Atack, September 20, 2015 amending dates for "InOpBy" and/or endpoints to fix microfractures and inconsistencies,1861 or earlier.= 2 ==> JA; 9/21/2015 switched dates and names (1861-1903) on Charleston & Savannah RR just west of Ashley River to accurately reflect LOC map for this RR= 3 ==> JA: 12/22/2015 modification to RR dates and locations around Baltimore, New York city, Philadelphia and Washington DC reflecting (some but not all) of the 1860 mapping by C. Baer et al., Canals and Railroads of the Mid-Atlantic States, 1800-1860 (Hagley Foundation 1981)SHP file edited 5/9/2016 to fix error message in ArcCatalog caused by 4 "phantom" features (InOpBy=blank/zero) that had no geometry associated with them.
May 18, 2019 Early Morning Tornado OutbreakOn the morning of May 18, 2019, at least six strong tornadoes touched down across West Central Texas. The area was under a tornado watch and the tornadoes damaged or destroyed several hundred homes, many outbuildings, trees, fences, power poles and power lines. Between 2 AM and 10 AM, at least 3 EF-2 Tornadoes, 3 EF-3 tornadoes, and an EF-0 touched were reported. The EF-0 was reported near Melvin and was a brief touchdown..Northern Schleicher Tornado...Rating: EF-2Estimated Peak Wind: 115-120 mphPath Length /statute/: 2.2 milesPath Width /maximum/: 250 yardsFatalities: NoneInjuries: 1Start Date: May 18 2019Start Time: 2:07 AM CDTStart Location: 12 miles north of Eldorado / Schleicher County / TXStart Lat/Lon: 31.0382/-100.5931End Date: May 18 2019End Time: 2:13 AM CDTEnd Location: 14.5 miles north of Eldorado / Schleicher County / TXEnd Lat/Lon: 31.0678/-100.6049This tornado touched down in northern Schleicher County and took the roofcompletely off of a home made out of stone. The tornado snapped trunks, scattereddebris for a considerable distance and moved a vehicle. It even lodged a piece of vinyl material in between the tire and the tire rim..Dove Creek to San Angelo Tornado...Rating: EF-2Estimated Peak Wind: 120-125 mphPath Length /statute/: 18 milesPath Width /maximum/: 1 mileFatalities: NoneInjuries: NoneStart Date: May 18 2019Start Time: 457 AM CDTStart Location: 16 miles southwest of San Angelo / Tom Green County / TXStart Lat/Lon: 31.3230/-100.6501End Date: May 18 2019End Time: 551 AM CDTEnd Location: 2 miles northeast of San Angelo / Tom Green County / TXEnd Lat/Lon: 31.4913/-100.4266This long path tornado began in Dove Creek and took the roof ofseveral homes. The tornado also caused some outer walls to collapseand it destroyed several outbuildings. The tornado continued to damagetrees as it crossed over Twin Buttes Reservoir. Then it entered theSouthland Subdivision, located southwest of San Angelo where the tornadobroadened in size and weakened to EF-0 with winds estimated at 65 to 85 mph.It caused some roof damage, toppled fences, broke windows, uprooted sometrees and broke many tree limbs. The tornado continued to cause similardamage as it moved northeast towards the College Hills Subdivision. The tornadothen increased to EF-1, just north of Angelo State University. Thetwister intensified to an EF-2 as it struck the Bradford ElementaryNeighborhood in the north part of San Angelo. It damaged or destroyed manyhomes and left about 42 homes uninhabitable as it removed their roofs andcaused outer walls to collapse. It threw an automobile into a residence andsnapped tree trunks..Abilene Tornado...Rating: EF-2Estimated Peak Wind: 120-125 mphPath Length /statute/: 5.2 milesPath Width /maximum/: 388 yardsFatalities: NoneInjuries: 1Start Date: May 18 2019Start Time: 543 AM CDTStart Location: 6 miles southwest of Abilene / Taylor County / TXStart Lat/Lon: 32.4191/-99.8388End Date: May 18 2019End Time: 553 AM CDTEnd Location: 1 mile west of Abilene / Taylor County / TXEnd Lat/Lon: 32.4504/-99.7607This tornado touched down on the southeast corner of Dyess Airforce Baseand damaged some roofs and destroyed a shed. The tornado moved northeastand impacted many residential neighborhoods on both sides of the WintersFreeway located on the west side of Abilene. It damaged many roofs, blewout windows, uprooted trees and damaged tree limbs. The tornado strengthenedto an EF-2 as it crossed South 6th Street, and it completely removed severalroofs from residential homes. According to the City of Abilene, about 357 homeswere affected by this tornado..Ballinger Tornado...Rating: EF-3Estimated Peak Wind: 145 mphPath Length /statute/: 18.9 milesPath Width /maximum/: 1.0 milesFatalities: NoneInjuries: 1Start Date: May 18 2019Start Time: 652 AMStart Location: 4 miles northeast of Mereta / Runnels County / TXStart Lat/Lon: 31.5142/-100.0926End Date: May 18 2019End Time: 731 AMEnd Location: 1.9 miles west northwest of Ballinger / Runnels County / TXEnd Lat/Lon: 31.7544/-99.9735This long track EF-3 Tornado damaged or destroyed several homes and outbuildings.It snapped tree trunks and even swept one home completely off its foundation. Thistornado was multi-vortex at times and narrowly missed the City of Ballinger. The tornado destroyed theCountry Club and the High School baseball field. The tornado slammed an axle into a water tower and punctured the tower, causing all of the stored water to be lost. Found a piece of steel roof perlin embedded into a mesquite tree limb..Eastern Runnels County Tornado...Rating: EF-3Estimated Peak Wind: 140-145 mphPath Length /statute/: 5.9 milesPath Width /maximum/: 1 mileFatalities: NoneInjuries: NoneStart Date: May 18 2019Start Time: 752 AM CDTStart Location: 4 miles northeast of Benoit / Runnels County / TXStart Lat/Lon: 31.8350/-99.7791End Date: May 18 2019End Time: 802 AM CDTEnd Location: 2 miles southeast of Crews / Runnels County / TXEnd Lat/Lon: 31.9106/-99.7364This large, wide path tornado remained mostly in the rural part of easternRunnels County. It damaged and even snapped tree trunks. It toppledfour high tension steel towers and destroyed another. The tornado alsodestroyed a few outbuildings and a Recreational Vehicle. The debriswas thrown for at least a half mile..Silver Valley Tornado...Rating: EF-3Estimated Peak Wind: 136-140 mphPath Length /statute/: 8.2 milesPath Width /maximum/: 300 yardsFatalities: NoneInjuries: NoneStart Date: May 18 2019Start Time: 820 AM CDTStart Location: 10 miles northwest of Coleman / Coleman County / TXStart Lat/Lon: 31.8604/-99.5939End Date: May 18 2019End Time: 843 AM CDTEnd Location: 12 miles northwest of Coleman / Coleman County / TXEnd Lat/Lon: 31.9608/-99.5317This tornado also remained mostly in rural areas. However, it destroyeda cabin, outbuildings and many trees. The tornado completely removed theupstairs story of a well built two story residence, collapsing two exteriorwalls.EVENT SUMMARY: At least six strong tornadoes ravaged portions of West CentralTexas during the early morning hours on Saturday,May 18, 2019. Many homes were left uninhabitable. We have video evidenceof a multi-vortex tornado near Lowake. In addition, we have video evidenceof two other large tornadoes, one near Silver Valley and another just westof Ballinger.The National Weather Service wishes to thank the following for their assistance on these damage surveys: Homeowners, Dove Creek Fire Department, San Angelo Fire and Police Department and Emergency Management, Abilene Fire Dept., Abilene Emergency Management, Texas Department of Public Safety and Division of EmergencyManagement, the Texas Forest Service, Coleman Fire and Emergency Management, City of Ballinger, Runnels County Law Enforcement and Fire Dept., Texas Forest Service, our media partners, Dyess Airforce Base, U.S. Homeland Security and all who contributed to this survey.We are very grateful that there was no loss of life from thesetornadoes.EF Scale: The Enhanced Fujita Scale classifies tornadoes into thefollowing categories:EF0...Weak......65 to 85 mphEF1...Weak......86 to 110 mphEF2...Strong....111 to 135 mphEF3...Strong....136 to 165 mphEF4...Violent...166 to 200 mphEF5...Violent...>200 mphNOTE:The information in this statement is preliminary and subject tochange pending final review of the events and publication in NWSStorm Data.
description: This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Folds_OffshoreTomalesPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. The Point Reyes Peninsula is bounded to the south and west in the offshore by the north- and east-dipping Point Reyes Thrust Fault (McCulloch, 1987; Heck and others, 1990), which lies about 20 km west of Tomales Point. Granitic basement rocks are offset about 1.4 km on this thrust fault offshore of Point Reyes (McCulloch, 1987), and this uplift combined with west-side-up offset on the San Andreas Fault (Grove and Niemi, 2005) resulted in uplift of the Point Reyes Peninsula, including Tomales Point and the adjacent continental shelf. Grove and others (2010) reported uplift rates of as much as 1 mm/yr for the south flank of the Point Reyes Peninsula based on marine terraces, but reported no datable terrace surfaces that could constrain uplift for the flight of 4-5 terraces exposed farther north along Tomales Point. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activity S-15-10-NC). The seismic reflection profiles were collected between 2007 and 2010. References Cited Grove, K., and Niemi, T.M., 2005, Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California: Tectonophysics, v. 401, p. 231-250. Grove, K, Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401.; abstract: This part of DS 781 presents data for folds for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Folds_OffshoreTomalesPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. The Point Reyes Peninsula is bounded to the south and west in the offshore by the north- and east-dipping Point Reyes Thrust Fault (McCulloch, 1987; Heck and others, 1990), which lies about 20 km west of Tomales Point. Granitic basement rocks are offset about 1.4 km on this thrust fault offshore of Point Reyes (McCulloch, 1987), and this uplift combined with west-side-up offset on the San Andreas Fault (Grove and Niemi, 2005) resulted in uplift of the Point Reyes Peninsula, including Tomales Point and the adjacent continental shelf. Grove and others (2010) reported uplift rates of as much as 1 mm/yr for the south flank of the Point Reyes Peninsula based on marine terraces, but reported no datable terrace surfaces that could constrain uplift for the flight of 4-5 terraces exposed farther north along Tomales Point. Folds were primarily mapped by interpretation of seismic reflection profile data (see field activity S-15-10-NC). The seismic reflection profiles were collected between 2007 and 2010. References Cited Grove, K., and Niemi, T.M., 2005, Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California: Tectonophysics, v. 401, p. 231-250. Grove, K, Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401.
NOAA provided Atlas 14, Volume 11 rainfall data in a GIS compatible ASCii format. The resulting processed rainfall isopluvials align in a general east-west direction. Using the east-west isopluvial orientation as a general guide, the datasets listed below were used to inform and refine the delineation of the Precipitation Area boundaries. The five (5) Precipitation Areas are generally orientated lengthwise in an east-west direction to follow the isopluvial orientation. Precipitation Area numbering followed a north-south direction, with PA-1 being the most northerly area and PA-5 being the most southerly area.
Datasets used to inform the PA boundary delineations and source (acquired in 2018):
• San Antonio River watershed subbasins - San Antonio River Authority
• HUC 12 layers – Texas Natural Resources Information System
• Rivers & Creeks – United States Geological Survey
• Bexar County boundary – City of San Antonio
• Cibolo Creek subbasins – San Antonio River Authority
This dataset will be evaluated for general accuracy on an annual basis, or more frequently as necessary.
description: This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Faults_OffshoreTomalesPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. The Point Reyes Peninsula is bounded to the south and west in the offshore by the north- and east-dipping Point Reyes Thrust Fault (McCulloch, 1987; Heck and others, 1990), which lies about 20 km west of Tomales Point. Granitic basement rocks are offset about 1.4 km on this thrust fault offshore of Point Reyes (McCulloch, 1987), and this uplift combined with west-side-up offset on the San Andreas Fault (Grove and Niemi, 2005) resulted in uplift of the Point Reyes Peninsula, including Tomales Point and the adjacent continental shelf. Grove and others (2010) reported uplift rates of as much as 1 mm/yr for the south flank of the Point Reyes Peninsula based on marine terraces, but reported no datable terrace surfaces that could constrain uplift for the flight of 4-5 terraces exposed farther north along Tomales Point. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activity S-15-10-NC). The seismic reflection profiles were collected between 2007 and 2010. References Cited Grove, K., and Niemi, T.M., 2005, Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California: Tectonophysics, v. 401, p. 231-250. Grove, K, Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401.; abstract: This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore of Tomales Point map area, California. The vector data file is included in "Faults_OffshoreTomalesPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreTomalesPoint/data_catalog_OffshoreTomalesPoint.html. The Point Reyes Peninsula is bounded to the south and west in the offshore by the north- and east-dipping Point Reyes Thrust Fault (McCulloch, 1987; Heck and others, 1990), which lies about 20 km west of Tomales Point. Granitic basement rocks are offset about 1.4 km on this thrust fault offshore of Point Reyes (McCulloch, 1987), and this uplift combined with west-side-up offset on the San Andreas Fault (Grove and Niemi, 2005) resulted in uplift of the Point Reyes Peninsula, including Tomales Point and the adjacent continental shelf. Grove and others (2010) reported uplift rates of as much as 1 mm/yr for the south flank of the Point Reyes Peninsula based on marine terraces, but reported no datable terrace surfaces that could constrain uplift for the flight of 4-5 terraces exposed farther north along Tomales Point. Faults were primarily mapped by interpretation of seismic reflection profile data (see field activity S-15-10-NC). The seismic reflection profiles were collected between 2007 and 2010. References Cited Grove, K., and Niemi, T.M., 2005, Late Quaternary deformation and slip rates in the northern San Andreas fault zone at Olema Valley, Marin County, California: Tectonophysics, v. 401, p. 231-250. Grove, K, Sklar, L.S., Scherer, A.M., Lee, G., and Davis, J., 2010, Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas fault zone north of San Francisco, California: Tectonophysics, v. 495, p. 256-268. Heck, R.G., Edwards, E.B., Kronen, J.D., Jr., and Willingham, C.R., 1990, Petroleum potential of the offshore outer Santa Cruz and Bodega basins, California, in Garrison, R.E., Greene, H.G., Hicks, K.R., Weber, G.E., and Wright, T.L., eds. Geology and tectonics of the central California coastal region, San Francisco to Monterey: Pacific Section, American Association of Petroleum Geologists Bulletin GB67, p. 143-164. McCulloch, D.S., 1987, Regional geology and hydrocarbon potential of offshore central California, in Scholl, D.W., Grantz, A., and Vedder, J.G., eds., Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Oceans Beaufort Sea to Baja California: Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, v. 6., p. 353-401.
These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24, 000-scale) and the 15-minute (1:48, 000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 400,000-plus point and polygon mine symbols from approximately 51,000 maps of 17 western states (AZ, CA, CO, ID, KS, MT, ND, NE, NM, NV, OK, OR, SD, UT, WA, WY and western TX) has been completed. The process renders not only a more complete picture of exploration and mining in the western U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset was created by the Transportation Planning and Programming (TPP) Division of the Texas Department of Transportation (TxDOT) for planning and asset inventory purposes, as well as for visualization and general mapping. County boundaries were digitized by TxDOT using USGS quad maps, and converted to line features using the Feature to Line tool. This dataset depicts a generalized coastline.Update Frequency: As NeededSource: Texas General Land OfficeSecurity Level: PublicOwned by TxDOT: FalseRelated LinksData Dictionary PDF [Generated 2025/03/14]