This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature service includes change areas for city boundaries and county line adjustments filed in accordance with Government Code 54900. The boundaries in this map are based on the State Board of Equalization's tax rate area maps for the assessment roll year specified in the COFILE field. The information is updated regularly within 10 business days of the most recent BOE acknowledgement date. Some differences may occur between actual recorded boundaries and boundary placement in the tax rate area GIS map. Tax rate area boundaries are representations of taxing jurisdictions for the purpose of determining property tax assessments and should not be used to determine precise city or county boundary line locations. BOE_CityAnx Data Dictionary: COFILE = county number - assessment roll year - file number; CHANGE = affected city, unincorporated county, or boundary correction; EFFECTIVE = date the change was effective by resolution or ordinance; RECEIVED = date the change was received at the BOE; ACKNOWLEDGED = date the BOE accepted the filing for inclusion into the tax rate area system; NOTES: additional clarifying information about the action. BOE_CityCounty Data Dictionary: COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the BOE's 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).
This is SCAG’s 2019 city boundary data (v.1.0), updated as of July 6, 2021, including the boundaries for each of the 191 cities and 6 county unincorporated areas in the SCAG region. The original city boundary data was obtained from county LAFCOs to reflect the most current updates and annexations to the city boundaries. This data will be further reviewed and updated as SCAG continues to receive feedbacks from LAFCOs, subregions and local jurisdictions.Data-field description:COUNTY: County name COUNTY_ID: County FIPS CodeCITY: City NameCITY_ID: City FIPS CodeACRES: Area in acresSQMI: Area in square milesYEAR: Dataset year
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map includes change areas for city and county boundaries filed in accordance with Government Code 54900. The initial dataset was first published on October 20, 2021, and was based on the State Board of Equalization's tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax jurisdictions. The boundaries are continuously being revised when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions and should not be used to determine precise city or county boundary line locations.The data is updated within 10 business days of the CDTFA receiving a copy of the Board of Equalization's acknowledgement letter.BOE_CityAnx Data Dictionary: COFILE = county number - assessment roll year - file number (see note*); CHANGE = affected city, unincorporated county, or boundary correction; EFFECTIVE = date the change was effective by resolution or ordinance (see note*); RECEIVED = date the change was received at the BOE; ACKNOWLEDGED = date the BOE accepted the filing for inclusion into the tax rate area system; NOTES = additional clarifying information about the action.*Note: A COFILE number ending in "000" is a boundary correction and the effective date used is the date the map was corrected.BOE_CityCounty Data Dictionary: COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the Board of Equalization's 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).
https://www.california-demographics.com/terms_and_conditionshttps://www.california-demographics.com/terms_and_conditions
A dataset listing California counties by population for 2024.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This web map displays the California Department of Education's (CDE) core set of geographic data layers. This content represents the authoritative source for all statewide public school site locations and school district service areas boundaries for the 2018-19 academic year. The map also includes school and district layers enriched with student demographic and performance information from the California Department of Education's data collections. These data elements add meaningful statistical and descriptive information that can be visualized and analyzed on a map and used to advance education research or inform decision making.
This digital map database represents the general distribution of bedrock and surficial geologic units, and related data in the Fonts Point and Seventeen Palms 7.5’ quadrangles, California. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. This investigation delineates the geologic framework of an area of 75 square kilometers (km2) located west of the Salton Sea in southern California. The study area encompasses the south flank of the Santa Rosa Mountains and the eastern part of the Borrego Badlands. In this study area, regionally important stratigraphic and structural elements collectively inform the late Cenozoic geologic evolution of the Anza-Borrego sector of the Salton Trough province. This geodatabase contains all of the map information used to publish the Preliminary Geologic Map of the Southern Santa Rosa Mountains and Borrego Badlands, San Diego County, Southern California Pettinga, J.R., Dudash, S.L., and Cossette, P.M., 2023, Preliminary Geologic Map of the Southern Santa Rosa Mountains and Borrego Badlands, San Diego County, Southern California: U.S. Geological Survey Open-File Report 2023–1076, scale 1:12,000, https://doi.org/10.3133/ofr20231076.
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of March 2025. The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.
Purpose
County boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.
This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This feature layer is for public use.
Related Layers
This dataset is part of a grouping of many datasets:
Point of Contact
California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov
Field and Abbreviation Definitions
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.
This dataset includes the boundaries for the six counties in the Southern California Association of Governments (SCAG) Region.
Power Outages by County
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows cases broken down by the county level and city level in Southern California.
The Yucaipa 7.5' quadrangle is located at the southeastern margin of the San Bernardino Basin, an extensional region situated within a right-step-over zone between the San Jacinto and San Andreas Fault zones. The quadrangle is traversed by several faults of the San Andreas system, including (from oldest to youngest) the Banning Fault and the Wilson Creek, Mission Creek, Mill Creek, and San Bernardino Strands of the San Andreas Fault. The Mill Creek Strand of the San Andreas Fault is the easternmost strand of the San Andreas in the Yucaipa quadrangle. It separates granitic and metamorphic rocks of the San Bernardino Mountains block from a thin slice of similar rocks on Yucaipa Ridge, and thus has only a small amount of strike-slip displacement. The Wilson Creek Strand traverses Yucaipa Ridge and converges toward the Mlll Creek Strand in the Santa Ana river Canyon. The fault has juxtaposed an igneous and metamorphic complex (Wilson Creek block) and overlying nonmarine sedimentary rocks (Mill Creek Formation of Gibson, 1971) against rocks of San Bernardino Mountains-type, and thus has significant strike-slip displacement. The Mission Creek Strand is inferred to lie beneath Quaternary surficial deposits along the southwestern base of the San Bernardino Mountains. This fault is the major strand of the San Andreas Fault zone, and has juxtaposed crystalline rocks of San Gabriel Mountains-type (including Pelona Schist overlain by the Vincent Thrust and associated upper-plate crystalline rocks) against the Wilson Creek block and the San Bernardino Mountains. The San Bernardino Strand defines the modern trace of the San Andreas Fault. The strand forms primary fault features in all but the youngest Quaternary surficial units, and is thought to have evolved in the last 125,000 years or so based on regional fault relations. Complications within the San Andreas Fault system over the last several hundred thousand years have created a landscape setting in which Quaternary surficial materials of the Yucaipa quadrangle have accumulated. Crustal extension throughout the San Bernardino Basin region led to uplift of the Crafton Hills block and down-dropping of the Yucaipa Valley region on faults of the Crafton Hills and Chicken Hill complex. Subsequent middle and late Quaternary streamflows deposited several generations of axial-valley and alluvial-fan sediment in the down-dropped lowlands. These deposits and the older San Timoteo beds they overlie record the history of Quaternary fault movements, and form reservoirs for ground water in the Yucaipa quadrangle. Digital Data: The geologic database of the Yucaipa 1:24,000-scale 7.5' quadrangle, San Bernardino and Riverside Counties, California, was prepared by the Southern California Areal Mapping Project (SCAMP), a regional geologic-mapping project sponsored jointly by the U.S. Geological Survey and the California Geological Survey. The database was created in ARC/INFO (Environmental Systems Research Institute, ESRI), and includes the following files: (1) a readme.txt file, (2) this metadata file, (3) coverages containing geologic data and station-location data, (4) associated INFO attribute data files, (5) a browse graphic (.pdf) of the geologic-map plot and map-marginal explanatory information, (6) a PostScript graphics file of the geologic-map plot with map-marginal explanatory information, and (7) .pdf text files describing the map units of the Yucaipa quadrangle (Description of Map Units) and their geologic age and correlation (Correlation of Map Units).
The Redlands 7.5' quadrangle is located in the southeastern margin of the San Bernardino Basin, an extensional region situated in a right-step-over zone within the San Andreas Fault system. The quadrangle is traversed by several important fault zones, including: (1) northwest-trending right-lateral strike-slip faults of the San Andreas system (Banning Fault, the Mission Creek and San Bernardino Strands of the San Andreas Fault, the San Jacinto Fault); (2) northeast-trending normal dip-slip faults that have downdropped the San Bernardino Basin; (3) east-trending contractional faults of the San Timoteo Canyon Fault zone. Some of these faults bound distinctive packages of crystalline basement rock. Northwest of the Mission Creek Strand of the San Andreas Fault lies an igneous and metamorphic complex characterized by textural and compositional heterogeneity. This terrane, the Wilson Creek block, is strongly gneissose but includes foliated to massive granitoid rocks intimately intermingled with the gneisses. Thin slices of the gneissose complex have been displaced a few kilometers by the San Bernardino Strand of the San Andreas, the modern trace of the San Andreas Fault in the Redlands quadrangle and elsewhere along the southwest margin of the San Bernardino Mountains. The Mission Creek strand is inferred to lie beneath Quaternary surficial deposits along the southwestern base of the San Bernardino Mountains. This fault is the major strand of the San Andreas Fault zone, has about 100 km of right-slip, and has juxtaposed distinctive crystalline rocks of San Gabriel Mountains-type against the Wilson Creek block and the San Bernardino Mountains. The Banning Fault probably demarcates an important boundary between rocks of San Gabriel Mountains-type to the north and rocks of Peninsular Ranges-type to the south. This hypothesis is difficult to test because outcrops of the two terranes are several miles apart and between them the trace of the Banning Fault must be inferred beneath surficial deposits and beneath the San Timoteo beds of Frick (1921). The rocks of Peninsular Range-type are very different from those of San Gabriel Mountains-type, and consist of massive to foliated granitoids of monzogranitic, granodioritic, and tonalitic composition. Much of the Redlands quadrangle is covered with unconsolidated Quaternary surficial deposits of sand and gravel that have accumulated over the last 600,000 years or so. These are thickest on the modern and ancestral flood plains of the Santa Ana River. In the south part of the quadrangle within the San Timoteo and Reche Canyon drainage systems, Quaternary surficial deposits are less extensive and have distribution patterns determined by displacements on the San Timoteo Canyon Fault zone (reverse faulting) and the San Jacinto Fault (strike-slip faulting). In this region, folded and faulted deposits of the San Timoteo beds of Frick, (1921) formed upwarps and downwarps that influenced the evolution of the landscape and its sedimentary deposits. Digital Data: This geologic database of the Redlands 1:24,000-scale 7.5' quadrangle, San Bernardino and Riverside Counties, California, was prepared by the Southern California Areal Mapping Project (SCAMP), a geoscience project sponsored jointly by the U.S. Geological Survey (USGS) and the California Geological Survey. The database was created in ARC/INFO (Environmental Systems Research Institute), and includes the following files: (1) a readme file, (2) this metadata file, (3) coverages containing geologic-map data and station-location data, (4) associated data tables, (5) a browse graphic of the geologic-map plot and map-marginal explanatory information (.pdf file), (6) a PostScript graphics file of the geologic-map plot with map-marginal explanatory information, and (7) .pdf files describing map units of the Redlands quadrangle (Description of Map Units) and their geologic age and correlation (Correlation of Map Units).
California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.Background: This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases. Layer Creation Process:In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:A. Show the position of Offshore Oil Leases. B. Produce a hard copy of 1927 NAD Coordinates for each lease. C. Discuss any problems evident after plotting the leases.Below are some of the details Cris included in the report:I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used. Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report. On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary. Lease Notes:PRC 1482The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.MJF Boundary Determination Officer 12/19/16PRC 3455The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.“City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”“State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”“Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”*The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.MJF Boundary Determination Officer 12-27-16PRC 4736The “lease area” for this lease is based on the Oil and Gas Lease and Agreement as found on the CSLC insider and recorded August 17, 1973 in BK 10855 PG 432 Official Records, Orange County. The State’s Mineral Interests are confined to Parcels “B-1” and “B-2” and are referred to as “State Mineral Lands” comprising 70.00 Acres. The lessee each has a right to certain uses including but not limited to usage of utility corridors, 110 foot radius parcels surrounding well-sites and roads. The State also has access to those same roads per this agreement/lease. Those uses are allowed in what are termed “State Lands”-Parcel E and “Leased Lands” which are defined as the “South Bolsa Lease Area”-Parcel C (2 parcels) and “North Bolsa Lease Area”-Parcel D. The “State Lands”-Parcel E are actually 3 parcels, 2 of which are within road right-of-ways. MJF Boundary Determination Officer 12-28-16
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This digital dataset is comprised of three separate data files that contain total dissolved solids, well construction, and well identifying information for 3,546 water wells used to map salinity in and around 31 southern and central California oil fields. Salinity mapping was done for 27 fields located in the southern San Joaquin Valley of Kern County (North Belridge, South Belridge, Canfield Ranch, North Coles Levee, South Coles Levee, Cymric, Edison, Elk Hills, Fruitvale, Greely, Jasmin, Kern Bluff, Kern Front, Kern River, Lost Hills, Mount Poso, Mountain View, Poso Creek, Rio Bravo, Rosedale, Rosedale Ranch, Round Mountain, San Emidio Nose, Tejon, Ten Section, Wheeler Ridge, and Yowlumne), 3 fields in the LA Basin of Los Angeles County (Montebello, Santa Fe Springs, and Wilmington), and 1 field in the central coast area of Santa Barbara and San Luis Obispo Counties (Santa Maria Valley). Unlike petroleum wells, water wells both within and adjacent to oil fields of interest were ...
This data set maps and describes the geology of the San Bernardino Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the northwestern Eagle Mountains, east-central Pinto Basin, and eastern Pinto Mountains. The quadrangle is underlain by a basement terrane comprising metamorphosed Proterozoic strata, Mesozoic plutonic rocks, and Jurassic and Mesozoic and (or) Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Pinto and Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, a cover of Miocene sedimentary deposits and basalt overlie the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial, surficial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Pinto and Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults along the range fronts facing Pinto Basin. In and around the San Bernardino Wash quadrangle, faults of the north-northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and some of the faults may offset Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The San Bernardino Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database comprises five coverages: (1) a geologic layer showing the distribution of geologic contacts and units; (2) a structural layer showing the distribution of faults (arcs) and fault ornamentation data (points); (3) a layer showing the distribution of dikes (arcs); a structural point data layer showing (4) bedding and metamorphic foliation attitudes, and (5) cartographic map elements, including unit label leaders and geologic unit annotation. The dataset also includes a scanned topographic base at a scale of 1:24,000. Within the database coverages, geologic contacts , faults, and dikes are represented as lines (arcs and routes), geologic units as areas (polygons and regions), and site-specific data as points. Polygon, region, arc, route, and point attribute tables uniquely identify each geologic datum and link it to descriptive tables that provide more detailed geologic information. The digital database is accompanied by two derivative maps: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base and (2) a PostScript graphic-file containing the geologic map on a 1:24,000 topographic base. Each of these map products is accompanied by a marginal explanation consisting of a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols. The database is further accompanied by three document files: (1) a readme that lists the contents of the database and describes how to access it, (2) a pamphlet file that describes the geology of the quadrangle and (3) this metadata file.
The data set for the Cougar Buttes quadrangle has been prepared by the Southern California Areal Mapping Project (SCAMP), a cooperative project sponsored jointly by the U.S. Geological Survey and the California Division of Mines and Geology, as part of an ongoing effort to utilize a Geographical Information System (GIS) format to create a regional digital geologic database for southern California. This regional database is being developed as a contribution to the National Geologic Map Data Base of the National Cooperative Geologic Mapping Program of the USGS. Development of the data set for the Cougar Buttes quadrangle has also been supported by the Mojave Water Agency and U.S. Forest Service, San Bernardino National Forest.
The digital geologic map database for the Cougar Buttes quadrangle has been created as a general-purpose data set that is applicable to other land-related investigations in the earth and biological sciences. In cooperation with the Water Resources Division of the U.S. Geological Survey, we have used our mapping in the Cougar Buttes and adjoining quadrangles together with well log data to develop a hydrogeologic framework for the basin. In an effort to understand surficial processes and to provide a base suitable for ecosystem assessment, we have differentiated surficial veneers on piedmont and pediment surfaces and distinguished the various substrates found beneath these veneers. Currently, the geologic database for the Cougar Buttes quadrangle is being applied in groundwater investigations in the Lucerne Valley basin (USGS, Water Resources Division), in biological species studies of the Cushenbury Canyon area (U.S. Forest Service, San Bernardino National Forest), and in the study of soils on various Quaternary landscape surfaces on the north piedmont of the San Bernardino Mountains (University of New Mexico). The Cougar Buttes database is not suitable for site-specific geologic evaluations at scales greater than 1:24,000 (1 in = 2,000 ft).
This data set maps and describes the geology of the Cougar Buttes 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage showing geologic contacts and units, (2) a separate coverage layer showing structural data, (3) a scanned topographic base at a scale of 1:24,000, and (4) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). The data base is accompanied by a readme file and this metadata file. In addition, the data set includes the following graphic and text products: (1) A portable document file (.pdf) containing a browse-graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic plot-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that summarizes the late Cenozoic geology of the Cougar Buttes quadrangle.
The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs, including low-altitude color and black-and-white photographs and high-altitude infrared photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 topographic base via a mylar orthophoto-quadrangle or by using a PG-2 plotter. The map was then scribed, scanned, and imported into ARC/INFO, where the database was built. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
This data set maps and describes the geology of the Telegraph 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a double precision map coverage containing geologic contacts and units, (2) a coverage containing site-specific structural data, (3) a coverage containing geologic-unit label leaders and their associated attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of this Readme (including the metadata file as an appendix), Description of Map Units (DMU), and the graphic produced by the PostScript plot file. The Telegraph Peak quadrangle is located in the eastern San Gabriel Mountains part of the Transverse Ranges Province of southern California. The generally east-striking structural grain characteristic of the crystalline rocks of much of the San Gabriel Mountains is apparent, but not well developed in the Telegraph Peak quadrangle. Here, the east-striking structural grain is somewhat masked by the northwest-striking grain associated with the San Andreas Fault zone. Faults within the quadrangle include northwest-striking, right-lateral strike-slip faults of the San Andreas system. The active San Andreas Fault, located in the northern part of the quadrangle, dominates the younger structural elements. North of the San Andreas Fault is the inactive Cajon Valley Fault that was probably an early strand of the San Andreas system. It was active during deposition of the middle Miocene Cajon Valley Formation. South of the San Andreas, the Punchbowl Fault, which is probably a long-abandoned segment of the San Andreas Fault (Matti and Morton, 1993), has a sinuous trace apparently due to compression in the eastern San Gabriel Mountains that post-dates displacement on the fault. The Punchbowl Fault separates two major subdivisions of the Mesozoic Pelona Schist and is left-laterally offset by a northeast-striking fault in the northwestern part of the quadrangle. Within the Punchbowl Fault zone is a thin layer of highly deformed basement rock, which is clearly not part of the Pelona Schist. To the southeast, in the Devore quadrangle, this included basement rock attains a thickness of several hundred feet. Along strike to the northwest, Tertiary sedimentary rocks are included within the fault zone. South of the Punchbowl Fault are several arcuate (in plan) faults that are part of an antiformal schuppen-like fault complex of the eastern San Gabriel Mountains. Most of these arcuate faults are reactivated and deformed older faults, and probably include the eastern part of the San Gabriel Fault. The Vincent Thrust of late Cretaceous or early Tertiary age separates the Pelona Schist in the lower plate from a heterogeneous basement complex in the upper plate. Immediately above the Vincent Thrust is a variable thickness of mylonitic rock generally interpreted as a product of displacement on the thrust. The upper plate includes two Paleozoic units, a schist and gneiss sequence and a schist, quartzite, and marble metasedimentary sequence. Both sequences are thrust over the Mesozoic Pelona Schist along the Vincent Thrust, and intruded by Tertiary (late Oligocene) granitic rocks, granodiorite of Telegraph Peak, that also intrude the Vincent Thrust. The Pelona Schist consists mostly of greenschist to amphibolite metamorphic grade meta-basalt (greenschist and amphibolite) and meta-graywacke (siliceous and white mica schist), with minor impure quartzite and marble, in which all primary structures have been destroyed and all layering transposed. Cretaceous granitic rocks, chiefly tonalite, intrude the schist and gneiss sequence, but not the Pelona Schist or the Vincent Thrust. North of the San Andreas Fault, bedrock units consist of undifferentiated Cretaceous tonalite, here informally named tonalite of Circle Mountain, with some included small boldies of gneiss and marble. These basement rocks are the westward continuation of rocks of the San Bernardino Mountains and not rocks of the San Gabriel Mountains south of the San Andreas Fault. Also north of the San Andreas Fault are the Oligocene Vaqueros Formation, middle Miocene Cajon Valley Formation, and Pliocene rocks of Phelan Peak. The latter two formations are divided into several conglomerate and arkosic sandstone subunits. In the northeastern corner of the quadrangle, the rocks of Phelan Peak are unconformably overlain by the Quaternary Harold Formation and Shoemaker Gravel. Quaternary units ranging from early Pleistocene to recent are mapped, and represent alluvial fan, landslide, talus, and wash environments. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. This digital Open-File map supercedes an older analog Open-File map of the quadrangle, and includes extensive new data on the Quaternary deposits, and revises some fault and bedrock distribution within the San Gabriel Mountains. The digital map was compiled on a base-stable cronoflex copy of the Telegraph 7.5' topographic base and then scribed. This scribe guide was used to make a 0.007 mil blackline clear-film, from which lines and point were hand digitized. Lines, points, and polygons were subsequently edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.