Vector polygon map data of property parcels from Kanawha County, West Virginia containing 117689 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
County boundary, District boundary and State boundary of West Virginia.
Digitized from USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. First published January 2002, updated with Census 2000 attribute data and re-published March 2005. Scale: 1:24000. Attribute Information includes Federal Information Processing Standards (FIPS) codes and 2000 Census data.Coordinate System: NAD_1983_UTM_Zone_17N
Vector polygon map data of property parcels from Berkeley County, West Virginia containing 54,024 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Tax District Boundaries: Official tax district boundary lines adopted by the WV Legislature in 1978 as a general reference to delineate rural tax district boundaries. The boundaries were drawn from 1:24,000-scale USGS topographic maps in 1978 and coincide with county magisterial districts as of July 1, 1973. Unlike magisterial districts that are realigned every ten years following the census, the tax district boundary does not follow equal representation requirements. In 1978 the West Virginia Geologic and Economical Survey published six 1:500,000-scale maps delineating official county and tax district boundary lines for the State. In 1996 the West Virginia Department of Tax and Revenue, Property Tax Division, converted the 1978 source maps into a digital format and added descriptive attributes for each tax district. In October of 2003, the WV GIS Technical Center appended 24K DLG boundary files and lines drawn from 24K DRGs into a statewide 24K Tax District Boundary dataset. In 2017, WVGISTC has appended this file with parcel data or Census Populated Places boundaries for missing tax districts.
Digitized off of USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. First published January 2002, updated with Census 2000 attribute data and re-published March 2005.
Geospatial data about Wood County, West Virginia Roads. Export to CAD, GIS, PDF, CSV and access via API.
• Link to a 2005 report by Kurt J. McCoy, Melvin H. Podwysocki, E. Allen Crider, and David J. Weary titled Fracture Trace Map and Single-Well Aquifer Test Results in a Carbonate Aquifer in Berkeley County, West Virginia • The report can be downloaded as well as the supporting GIS data files
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:6,000.
Geospatial data about Wetzel County, West Virginia Parcels. Export to CAD, GIS, PDF, CSV and access via API.
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Elk River within communities in Kanawha and Clay Counties, West Virginia. These geospatial data include the following items: 1. elk_bnd; shapefile containing the polygon showing the mapped area boundary for the Elk River flood maps, 2. elk_hwm; shapefile containing high-water mark points, 3. polygon_elk_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_elk_dem; shapefile containing mapped extent of flood inundation, derived from the height above ground recorded at high-water marks and the digital elevation model (DEM) raster, 6. depth_dem; raster file for the flood depths derived from the height above ground recorded at high-water marks and the digital elevation model raster. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). For this study two sets of inundation layers were generated for each reach. One raster file showing flood depths, "depth_hwm", was created by using high-water mark water-surface elevation values on the land surface and a digital elevation model. However, differences in elevation between the surveyed water-surface elevation values at HWM’s and the land-surface elevation from the digital elevation model data provided uncertainty in the inundation extent of the generated layers. Often times elevation differences of +/- 20 feet were noticed between the surveyed elevation from a HWM on the land surface and the digital elevation model land-surface elevation. Due to these elevation differences, we incorporated a second method of interpolating the water-surface layer. The recorded height above ground value from the surveyed HWM was added to the digital elevation model land-surface elevation at that point. This created a new water-surface elevation value to be used with the “Topo to Raster” interpolation method to create a second depth raster, "depth_dem". Both sets of inundation layers are provided.
The WV_Parcel data is a composite dataset of individual county parcel data. Each county provides a unique dataset, with different temporal currencies, attributes and geographies.Website Link: https://www.mapwv.gov/
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These raster datasets are 3-meter lidar-derived images of Monroe County, West Virginia, and were created using geographic information systems (GIS) software. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which a hillshade was applied and a topographic position index (TPI) raster was calculated. These two rasters were uploaded into GlobalMapper, where the TPI raster was made partially transparent and overlaid the hillshade DEM. The resulting image was exported to create a 3-meter resolution lidar-derived image. The data is projected in North America Datum (NAD) 1983 UTM Zone 17.
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2022, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs are based on those delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Geospatial data about Cabell County, West Virginia Water. Export to CAD, GIS, PDF, CSV and access via API.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a 7.5 minute quadrangle format and include a detailed, field verified inventory of soils and nonsoil areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a 7.5 minute quadrangle format and include a detailed, field verified inventory of soils and nonsoil areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
description: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:6,000.; abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:6,000.
An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation has been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. For this dataset, 2-foot pixel resolution natural color digital orthimages were obtained from the West Virginia Statewide Addressing and Mapping Board. The orthoimages were mosaicked and reprojected by the USGS from the original 2-foot pixel, West Virginia North and South State Plane (feet) Coordinate Systems to Universal Transverse Mercator (UTM) (meters), Zone 17, NAD83 datum. Each orthoimage (DOQQ) provides the equivalent to a quarter of a 7.5-minute map (3.75 minutes of latitude and longitude) with overedge. The overedge is approximately 300 meters beyond the extremes of the corners of coverage. The naming convention is based on the U.S. Geological Survey 1:24,000 Topographic Map Series with the quadrant abbreviation, i.e. athens_ne.tif, etc. This data set covers the entire state of West Virginia including into UTM zone 18 on the east edge.
Digitized from USGS 1:24,000-scale Digital Raster Graphics (scanned topographic maps) by the West Virginia Department of Environmental Protection. WVGISTC dissolved county boundaries to create the state boundary. Published May 2002.Coordinate System: Lat/Long NAD 1983,UTM NAD 1983
Vector polygon map data of property parcels from Kanawha County, West Virginia containing 117689 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.