Facebook
TwitterThis public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html. CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium , or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information. Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view. For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Facebook
TwitterOn October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived community transmission and related data elements by county as originally displayed on the COVID Data Tracker. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly community transmission data by county as originally posted can also be found here: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this dataset with the daily values as originally posted on the COVID Data Tracker, and an historical dataset with daily data as well as the updates and corrections from state and local health departments. Similar to this dataset, the original historical dataset is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing historical community transmission data by county is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting community transmission levels for all available counties and jurisdictions. It contains reported daily transmission levels at the county level with the same values used to display transmission maps on the COVID Data Tracker. Each day, the dataset is appended to contain the most recent day's data. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If
Facebook
TwitterThis map identifies approved and in process land development projects within Washington County, MD. It also includes information on service requests, grading plans, traffic impact studies, forestry records, zoning, zoning overlays, and plats. This is NOT an inclusive map.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Tracking Population Trends: USA County Data Over Time" is a comprehensive dataset that provides valuable insights into the demographic changes occurring in the counties of the United States. This dataset allows researchers, analysts, and policymakers to explore and understand the evolution of county populations over the years. By examining the dataset, users can uncover patterns, trends, and shifts in population distributions, enabling them to make informed decisions based on historical growth patterns. Whether it's studying urbanization, migration patterns, or socioeconomic dynamics, this dataset offers a rich resource for analyzing and visualizing the population changes within specific counties and across the nation as a whole.
Description: ChatGPT
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterManagement of the COVID-19 pandemic has proven to be a significant challenge to policy makers. This is in large part due to uneven reporting and the absence of open-access visualization tools to present and analyze local trends as well as infer healthcare needs. Here we report the development of CovidCounties.org, an interactive web application that depicts daily disease trends at the level of US counties using time series plots and maps. This application is accompanied by a manually curated dataset that catalogs all major public policy actions made at the state-level, as well as technical validation of the primary data. Finally, the underlying code for the site is also provided as open source, enabling others to validate and learn from this work.
Facebook
TwitterReporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials t
Facebook
TwitterMontgomery County is home to a diverse population. To best serve the public Montgomery County requires certain positions occupied by certified bi-lingual employees. This table highlights each department in the county with bi-lingual employees and their certified language. Update Frequency : Annually
Facebook
TwitterThis is an external link to the CHATS system on the website of MIEMSS, Maryland Institute for Emergency Medical Services Systems. CHATS is updated every 60 seconds. CHATS shows and generates reports on the current status of hospitals and counties in Maryland, including real-time listings of Yellow Alerts and Red Alerts by hospital. The backing data are in an internal MIEMSS SQL database. The CHATS site is powered by Global Emergency Resources, LLC.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
There are two datasets related to the County Level Prevention Agenda Tracking Indicators posted on this site. Each dataset consists of county level data for 70 health tracking indicators and sub-indicators for the Prevention Agenda 2019-2024: New York State’s Health Improvement Plan. A health tracking indicator is a metric through which progress on a certain area of health improvement can be assessed. The indicators are organized by the Priority Area of the Prevention Agenda as well as the Focus Area under each Priority Area. The data sets also include indicators about major cross-cutting health outcomes and about health disparities. Each dataset includes tracking indicators for the five Priority Areas of the Prevention Agenda 2019-2024. The most recent year dataset includes the most recent county level data for all indicators. The trend dataset includes the most recent county level data and historical data, where available. Each dataset also includes the Prevention Agenda 2024 state objectives for the indicators. Sub-indicators are included in these datasets to measure health disparities among socioeconomic groups.
Facebook
TwitterThe Public Health Emergency (PHE) declaration for COVID-19 expired on May 11, 2023. As a result, the Aggregate Case and Death Surveillance System will be discontinued. Although these data will continue to be publicly available, this dataset will no longer be updated.
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily.
This dataset includes the URLs that were used by the aggregate county data collection process that compiled aggregate case and death counts by county. Within this file, each of the states (plus select jurisdictions and territories) are listed along with the county web sources which were used for pulling these numbers. Some states had a single statewide source for collecting the county data, while other states and local health jurisdictions may have had standalone sources for individual counties. In the cases where both local and state web sources were listed, a composite approach was taken so that the maximum value reported for a location from either source was used. The initial raw data were sourced from these links and ingested into the CDC aggregate county dataset before being published on the COVID Data Tracker.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level is classified as low, medium , or high.
COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
explain the relationship between DMA, FIPS and county
ChatGPT said: Here's a breakdown of the relationship between DMA, FIPS, and county:
🗺️ 1. County A county is a geographic and administrative subdivision of a U.S. state.
For example: Cook County in Illinois or Los Angeles County in California.
The U.S. has over 3,000 counties or county-equivalents.
🔢 2. FIPS Code FIPS = Federal Information Processing Standards code.
Used to uniquely identify geographic areas like states and counties.
It consists of:
State FIPS (2 digits) — e.g., California = 06
County FIPS (3 digits) — e.g., Los Angeles County = 037
Together: 06037 (California + Los Angeles County)
FIPS codes are used in datasets, GIS, and federal data standards to track data consistently across agencies.
📺 3. DMA (Designated Market Area) DMA is a geographic region defined by Nielsen where the population receives the same (or similar) TV and radio content.
Used in advertising, media, and Google Trends to segment the market by media consumption patterns.
There are 210 DMAs in the U.S., each labeled by Nielsen with a DMA code or name (e.g., "New York", "Chicago", "Palm Springs").
📌 How They Relate Concept Level Code Type Example County Local FIPS Los Angeles County (06037) FIPS Code System Numeric Encodes state + county DMA Media Region Name/Index Los Angeles DMA
One DMA contains multiple counties.
Example: The Los Angeles DMA includes Los Angeles County, Orange County, Ventura County, etc.
Each county has a unique FIPS code, but a DMA might span counties in multiple states.
When mapping or analyzing data (e.g., in GIS or Google Trends), you often merge county-level data (FIPS) into DMAs for media or market analysis.
🧭 Example State County FIPS DMA Name DMA Code California Los Angeles 06037 Los Angeles 803 California Orange 06059 Los Angeles 803 California Riverside 06065 Palm Springs 804
👉 DMA for FIPS 02013?
Alaska is unique: it’s sparsely populated and has limited Nielsen DMA coverage.
Most of rural Alaska does not belong to a defined DMA. Instead, large parts of Alaska are treated as “non-DMA” or are grouped into a single large DMA (often labeled Anchorage DMA if included).
Facebook
TwitterReporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted
Facebook
TwitterThis is one of three datasets related to the Prevention Agenda Tracking Indicators county level data posted on this site. Each dataset consists of county level data for 68 health tracking indicators and sub-indicators for the Prevention Agenda 2013-2017: New York State’s Health Improvement Plan. A health tracking indicator is a metric through which progress on a certain area of health improvement can be assessed. The indicators are organized by the Priority Area of the Prevention Agenda as well as the Focus Area under each Priority Area. Each dataset includes tracking indicators for the five Priority Areas of the Prevention Agenda 2013-2017. The latest data dataset includes the most recent county level data for all indicators. The trend dataset includes the most recent county level data and historical data, where available. Each dataset also includes the Prevention Agenda 2017 state targets for the indicators. Sub-indicators are included in these datasets to measure health disparities among socioeconomic groups. For more information, check out: http://www.health.ny.gov/prevention/prevention_agenda/2013-2017/ and https://www.health.ny.gov/PreventionAgendaDashboard, or go to the “About” tab.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set contains data from individuals arrested by a police officer in Montgomery County, including whether the arrest location is within 500 feet of a school.
https://montgomeryenergyconnection.org/wp-content/uploads/2019/10/MC_Seal.png" alt="">
The County has been an early adopter of technology and promoter of a transparent and efficient government. This represents the County’s commitment to being an inclusive, innovative and transparent government that is accountable and responsive and maintains a strong and vibrant economy. The County has been a leader in open government since the launch of its e-Government website initiative in 1992. Since then, the County has sustained a strong commitment to digitizing its information and services.
| Column Name | Description | Field Name | Data Type |
|---|---|---|---|
| ID Reference Number | Row number/ID Reference Number | id | Text |
| Subject's race | Subject's race | race | Text |
| Subject's gender | Subject's gender | gender | Text |
| Subject's age | Subject's age | age | Text |
| Ethnicity | Subject's ethnicity | ethnicity | Text |
| District of occurrence | District of occurrence | district | Text |
| Adjacent to School | Arrest occurred within 500 ft. of a school (1/0) | adjacent_to_school | Text |
| Assigned Division | District/division of officer's assignment | division | Text |
| Assigned Bureau | Bureau of officer's assignment | bureau | Text |
| Event Date/Time | Event Date/Time | event_date_time | Floating Timestamp |
Facebook
TwitterThis dataset is an export from Opportunity Insights Economic Tracker ( https://www.tracktherecovery.org/)
The data in this dataset was last updated September 17, 2020. More current data is available at the project's GitHub repository: https://github.com/OpportunityInsights/EconomicTracker
From the Web site: The Opportunity Insights Economic Tracker (https://tracktherecovery.org) combines anonymized data from leading private companies – from credit card processors to payroll firms – to provide a real-time picture of indicators such as employment rates, consumer spending, and job postings across counties, industries, and income groups.
All of the data displayed on the Economic Tracker can be downloaded here. In collaboration with our data partners, we are making this data freely available in order to assist in efforts to inform the public, policymakers, and researchers about the real-time state of the economy and the effects of COVID-19.
Anyone is welcome to use this data; we simply we ask that you attribute our work by citing or linking to the accompanying paper and the Economic Tracker at https://tracktherecovery.org.
Facebook
TwitterSummary Master list of cumulative cases and deaths for COVID-19 in Maryland by county, age, race, and sex as well as daily hospital bed occupancy levels. Data begins 1/1/2024. Description The COVID MASTER Tracker is a collection of Total Cases, Total Case Rates, Case Rates by County, Cases by County, Cases by Age Distribution, Cases by Gender Distribution, Cases by Race and Ethnicity Distribution, Total Daily Hospital Beds, Total Ever Hospitalized, Confirmed Deaths Statewide, Confirmed Deaths by Date of Death, Confirmed Deaths by County, Confirmed Deaths by Age Distribution, Confirmed Deaths by Gender Distribution, and Confirmed Deaths by Race And Ethnicity Distribution. Terms of Use The information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterBergen_County_Line
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Dataset containing hazard risk and resistance data for all BCAT-tracked jurisdictions across all 50 states, DC, and 5 US territories (American Samoa, Commonwealth of the Northern Mariana Islands, Guam, Puerto Rico, USVI), but rolled up to the county level. Tracked hazards include: flood, seismic, damaging wind, hurricane wind, and tornado. These five hazards are also consolidated into a "combined hazard" category. If a jurisdiction has high risk for any one of the five tracked hazards, it has high "combined hazard" risk. A jurisdiction is "combined hazard" resistant if and only if it is resistant to all of the individual five hazards for which it has high risk. Risk and resistance methodology is described in detail in the BCAT Glossary, accessible at www.fema.gov/bcat. Dataset aims to track Authorities Having Jurisdiction (AHJs), those political subdivisions of a state which adopt and enforce building codes or, in the absence of any state restrictions, could adopt and enforce building codes if they wanted to. These types of jurisdictions primarily tend to be incorporated places and counties (i.e., not statistical entities like Census blocks or tracts or Census Designated Places). The jurisdictional data is rolled up to the county level such that counties fall into one of three categories: fully resistant (meaning all the tracked jurisdictions in that county are resistant to the given hazard(s)), partially resistant (meaning some but not all of the jurisdictions in that county are resistant to the given hazard(s)), and not resistant (meaning none of the tracked jurisdictions in that county are resistant to the given hazard(s)).
Facebook
TwitterThis public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html. CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium , or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information. Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view. For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.