Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
This is GIS course announcement flier.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This vector dataset provides polygons that represent significant golf course facility locations in Suffolk County. These courses can be publicly (State, County, Town, Village) or privately owned. This dataset can be linked with the GolfCoursePoint feature class by the FACILITYID field. In some cases, there may be multiple Golf Course Points for a single Golf Course Polygon. These data are organized for consumption in desktop and web applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
UNIDO pub. Report on training programmes on application of Geographical Information Systems (GIS) technology for planning and management of industrial areas - covers (1) background and justification (2) the Remote Sensing (RS), Image Processing Systems (IPS), GIS and Decision Support Systems (DSS): relevant courses at the University of Trieste (Italy), this course also to be offered in Tanzania (3) presentation of the AFRICOVER project: georeferenced digital data base of land cover and geographic reference system to be introduced in African countries, details of method (4) problems of current classifications (Land Cover Classification System (LCCS)). Statistics, diagrams.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Python language offers an efficient way to automate and extend geoprocessing and mapping functionality. In ArcGIS 10, Python was fully integrated into ArcGIS Desktop with the addition of the Python window and the ArcPy site package. This course introduces Python scripting within ArcGIS Desktop to automate geoprocessing workflows. These skills are needed by GIS analysts to work efficiently and productively with ArcGIS for Desktop.After completing this course, you will be able to:Create geoprocessing scripts using the ArcPy site package.Identify common scripting workflows.Write Python scripts that create and update data.Create a script tool using built-in validation.
Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant _location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.
HEPGIS is a web-based interactive geographic map server that allows users to navigate and view geo-spatial data, print maps, and obtain data on specific features using only a web browser. It includes geo-spatial data used for transportation planning. HEPGIS previously received ARRA funding for development of Economically distressed Area maps. It is also being used to demonstrate emerging trends to address MPO and statewide planning regulations/requirements , enhanced National Highway System, Primary Freight Networks, commodity flows and safety data . HEPGIS has been used to help implement MAP-21 regulations and will help implement the Grow America Act, particularly related to Ladder of Opportunities and MPO reforms.
Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate data and geographic data from Madagascar for learning multi-criteria analysis in GIS courses.
Golf Courses in Henderson
Golf Courses, as of 2014
In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A Moodle Backup FIle (.mbz) of a course (SB33102 version Semester 1, 2018/19) is a compressed archive of a Moodle course that can be used to restore a course within Moodle. The file preserves course contents, structure and settings, but does not include student work or grades.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maps exist to convey information to people, whether that information is how to get from one point to another or how many oil fields are located in a given region. Effective cartography can convey that information efficiently to map users.In this course, you will be introduced to a five-step workflow for designing and creating maps. This workflow can be applied to any map or output medium (print or digital). This course will cover all steps of the workflow in general terms, emphasizing the first two steps: the cartographic planning process and data evaluation.After completing this course, you will be able to perform the following tasks:Identify and describe the cartographic workflow steps.Explain cartographic design controls and how they drive map creation.Apply the planning step of the cartographic workflow.Evaluate data sources to determine applicability.Discuss why basemap and operational layers are important.Assign the correct coordinate system to data based on the geographic extent and map objective.Assess the level of detail required for a map and apply generalization techniques when appropriate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains two Microsoft Excel documents:A quiz with eight questions, assigned to students in a graduate-level GIS programming course as part of Homework Assignment 2. The quiz assesses students' understanding of basic Python programming principles (such as loops and conditional statements).An Excel document with three worksheets, each corresponding to one homework assignment from the same graduate GIS programming course. The document includes self-reported background information (e.g., students' prior programming experience), details about the use of various resources (e.g., websites) for completing assignments, the perceived helpfulness of these resources, and scores for the homework assignments and quizzes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course