https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: 11/1/2023: Publication of the COVID data will be delayed because of technical difficulties. Note: 9/20/2023: With the end of the federal emergency and reporting requirements continuing to evolve, the Indiana Department of Health will no longer publish and refresh the COVID-19 datasets after November 15, 2023 - one final dataset publication will continue to be available. Note: 5/10/2023: Due to a technical issue updates are delayed for COVID data. New files will be published as soon as they are available. Note: 3/22/2023: Due to a technical issue updates are delayed for COVID data. New files will be published as soon as they are available. Note: 3/15/2023 test data will be removed from the COVID dashboards and HUB files in recognition of the fact that widespread use of at-home tests and a decrease in lab testing no longer provides an accurate representation of COVID-19 spread. Number of Indiana COVID-19 cases and deaths by age group, gender, race and ethnicity by day. All data displayed is preliminary and subject to change as more information is reported to IDOH. Expect historical data to change as data is reported to IDOH. Historical Changes: 1/11/2023: Due to a technical issue updates are delayed for COVID data. New files will be published as soon as they are available. 1/5/2023: Due to a technical issue the COVID datasets were not updated on 1/4/23. Updates will be published as soon as they are available. 9/29/22: Due to a technical difficulty, the weekly COVID datasets were not generated yesterday. They will be updated with current data today - 9/29 - and may result in a temporary discrepancy with the numbers published on the dashboard until the normal weekly refresh resumes 10/5. 9/27/2022: As of 9/28, the Indiana Department of Health (IDOH) is moving to a weekly COVID update for the dashboard and all associated datasets to continue to provide trend data that is applicable and usable for our partners and the public. This is to maintain alignment across the nation as states move to weekly updates. 2/10/2022: Data was not published on 2/9/2022 due to a technical issue, but updated data was released 2/10/2022. 12/30/21: This dataset has been updated, and should continue to receive daily updates. 12/15/21: The file has been adjusted with data through 12/13, and regular updates will resume to it today. 11/12/2021: Historical re-infections have been added to the case counts for all pertinent COVID datasets back to 9/1/2021 and new re-infections will be added to the total case counts as they are reported in accordance with CDC guidance. 06/23/2021: COVID Hub files will no longer be updated on Saturdays. The normal refresh of these files has been changed to Mon-Fri. 06/10/2021: COVID Hub files will no longer be updated on Sundays. The normal refresh of these files has been changed to Mon-Sat. 6/03/2021 : A batch of historical negative and positive test results added 16,492 historical tests administered, 7,082 tested individuals, and 765 historical cases to today's counts. These cases are not included in the new positive counts but have been added to the total positive cases. Today’s total case counts include historical cases received from other states. 2/4/2021 : Today’s dataset now includes 1,507 historical deaths identified through an audit of 2020 and 2021 COVID death records and test results.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After over two years of public reporting, the Community Profile Report will no longer be produced and distributed after February 2023. The final release will be on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.
The Community Profile Report (CPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, under the White House COVID-19 Team. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services, the Centers for Disease Control and Prevention, the Assistant Secretary for Preparedness and Response, and the Indian Health Service). The CPR provides easily interpretable information on key indicators for all regions, states, core-based statistical areas (CBSAs), and counties across the United States. It is a snapshot in time that:
Data in this report may differ from data on state and local websites. This may be due to differences in how data were reported (e.g., date specimen obtained, or date reported for cases) or how the metrics are calculated. Historical data may be updated over time due to delayed reporting. Data presented here use standard metrics across all geographic levels in the United States. It facilitates the understanding of COVID-19 pandemic trends across the United States by using standardized data. The footnotes describe each data source and the methods used for calculating the metrics. For additional data for any particular locality, visit the relevant health department website. Additional data and features are forthcoming.
*Color thresholds for each category are defined on the color thresholds tab
Effective April 30, 2021, the Community Profile Report will be distributed on Monday through Friday. There will be no impact to the data represented in these reports due to this change.
Effective June 22, 2021, the Community Profile Report will only be updated twice a week, on Tuesdays and Fridays.
Effective August 2, 2021, the Community Profile Report will return to being updated Monday through Friday.
Effective June 22, 2022, the Community Profile Report will only be updated twice a week, on Wednesdays and Fridays.
The COVID-19 Vaccination Survey in China was conducted in July 2021 to understand refugees' accessibility and willingness to receive a COVID-19 vaccination in China. UNHCR stresses that no one can be left behind in the global effort against COVID-19 and is monitoring the inclusion of refugees and asylum seekers in vaccination plans around the world. At the time, Chinese government policy did not provide free vaccines for foreigners without social security. The survey results however show that this policy was implemented with some flexibility, because among the few that were vaccinated already, more than half received a free COVID-19 vaccine. Some refugees reported difficulties or lack of information about vaccine registration or identity documents to book an appointment. Results further show that even though most are willing to get vaccinated, anti-vaccine sentiments are driven by fear of side effects.
The survey covers 24 provinces with most respondents residing in the province of Guangdong.
Households
The survey was distributed to all 1017 refugees and asylum seekers.
Census/enumeration data [cen]
No sampling was implemented.
Self-administered questionnaire: Web-based
Out of 1017 distributed surveys, UNHCR received 455 answers (45%). Of those, 30 respondents did not provide consent to participate in the survey.
This dataset contains counts of COVID-19 cases and deaths in North Carolina from March 2, 2020 to May 31, 2021. The data was extracted from NC Department of Health and Human Services' NC COVID-19 dashboard: Daily Cases and Deaths Metrics. This dataset is an archive - it is not being updated. Data Source: NCDHHS (2021). Daily Cases and Deaths Metrics (Version 1.3) [Data set]. https://covid19.ncdhhs.gov/dashboard/data-behind-dashboards
Note: This dataset is no longer being updated as of June 2, 2025.
This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.
AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.
LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.
The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.
While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.
Several additional data limitations should be kept in mind:
Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.
Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.
However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.
Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.
The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.
Information on this page outlines payments made to institutions for claims they have made to ESFA for various grants. These include, but are not exclusively, coronavirus (COVID-19) support grants. Information on funding for grants based on allocations will be on the specific GOV.UK page for the grant.
Financial assistance available to schools to cover increased premises, free school meals and additional cleaning-related costs associated with keeping schools open over the Easter and summer holidays in 2020, during the coronavirus (COVID-19) pandemic.
Financial assistance available to meet the additional cost of the provision of free school meals to pupils and students where they were at home during term time, for the period January 2021 to March 2021.
Financial assistance for additional transition support provided to year 11 pupils by alternative provision settings from June 2020 until the end of the autumn term (December 2020).
Financial assistance for schools, colleges and other exam centres to run exams and assessments during the period October 2020 to March 2021 (or for functional skills qualifications, October 2020 to December 2020).
Financial assistance for mentors’ salary costs on the academic mentors programme from the start of their training until 31 July 2021, with adjustment for any withdrawals.
Financial assistance for schools and colleges to support them with costs they have incurred when conducting asymptomatic testing site (ATS) onsite testing, in line with departmental testing policy.
Details of payments included in the data cover the following periods:
Phase | Period |
---|---|
Phase 1 | 4 January 2021 to 5 March 2021 |
Phases 2 and 3 | 6 March 2021 to 1 April 2021 |
Phase 4 | 2 April 2021 to 23 July 2021 |
Also included are details of exceptional costs claims made by schools and colleges that had to hire additional premises or make significant alterations to their existing premises to conduct testing from 4 January 2021 to 19 March 2021.
<h3 id="coronavirus-covid-19-workforce-fund-for-schoolshttpswwwgovukgovernmentpublicationscoronavirus-covid-19-workforce-fund-for-schoolscoronavirus-covid-19-workforce-f
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
As part of the efforts of the World Bank Group to understand the impact of COVID-19 on the private sector, the Enterprise Analysis unit is conducting follow-up surveys on recently completed Enterprise Surveys (ES) in several countries. These short surveys follow the baseline ES and are designed to provide quick information on the impact and adjustments that COVID-19 has brought about in the private sector.
Portugal
Firms
Sample survey data [ssd]
The follow-up surveys re-contact all establishments sampled in the standard ES using stratified random sampling. The total sample target was 1062. Sample Frame Source : Completed interviews in the Portugal 2019 ES. For more information on sampling methodology, see https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Sampling_Note.pdf
Computer Assisted Telephone Interviews (CATI)
The survey was implemented in Portugues. The questionnaire is available for download.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Covid-19 regularly updated data.
As of April 19, 2021, there had been around 27 deaths due to COVID-19 in New York City per 10,000 population. New York has been one of the U.S. states most impacted by the COVID-19 pandemic, with New York accounting for the most deaths of any state in the U.S. This statistic shows the death rates for coronavirus (COVID-19) in New York State as of April 19, 2021, by county.
In the state of New York, Richmond and Rockland have the highest coronavirus case rates when adjusted for the population of a county. Rockland County had around 1,404 positive cases per 10,000 people as of April 19, 2021.
The five boroughs of NYC With around 894,400 positive infections as of mid-April 2021, New York City has the highest number of coronavirus cases in New York State – this means that there were approximately 1,065 cases per 10,000 people. New York City is composed of five boroughs; each borough is coextensive with a county of New York State. Staten Island is the smallest in terms of population, but it is the borough with the highest rate of COVID-19 cases.
Public warned against complacency The number of new COVID-19 cases in New York City spiked for the second time as the winter holiday season led to an increase in social gatherings. New York State is slowly recovering – indoor dining reopened in February 2021 – but now is not the time for people to become complacent. Despite the positive rollout of vaccines, experts have urged citizens to adhere to guidelines and warned that face masks might have to be worn for at least another year.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Provisional deaths involving coronavirus disease 2019 (COVID-19) reported to NCHS by age group among United States residents, from MMWR Week 40 2020 through MMWR Week 39 2021.
Age groups: 0-4, 5-11, 12-15, 16-17, 18-24, 25-39, 40-49, 50-64, 65-74, and 75+ years
As of April 6, 2021, California had the highest number of positive tests for COVID-19 out of all U.S. states. This statistic shows the number of positive tests and total tests for COVID-19 in the U.S. as compiled by the COVID Tracking Project, as of April 6, 2021, by state.
Counts of COVID-19 Cases in CT Schools by County As of 6/24/2021, COVID-19 school-based surveillance activities for the 2020 – 2021 academic year has ended. The Connecticut Department of Public Health along with the Connecticut State Department of Education are planning to resume these activities at the start of the 2021 – 2022 academic year.
As part of the efforts of the World Bank Group to understand the impact of COVID-19 on the private sector, the Enterprise Analysis unit is conducting follow-up surveys on recently completed Enterprise Surveys (ES) in several countries. These short surveys follow the baseline ES and are designed to provide quick information on the impact and adjustments that COVID-19 has brought about in the private sector.
Hungary
Firms
Sample survey data [ssd]
The follow-up surveys re-contact all establishments sampled in the standard ES using stratified random sampling. The total sample target was 805. Sample Frame Source : Completed interviews in the Hungary 2019 ES. For more information on sampling methodology, see https://www.enterprisesurveys.org/content/dam/enterprisesurveys/documents/methodology/Sampling_Note.pdf
Computer Assisted Telephone Interviews (CATI)
The questionnaires contain the following modules: - Control information and introduction - Sales - Production - Labor - Finance - Policies - Expectations - Information on permanently closed establishments - Interview protocol
85.5%
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Brazil is the country with the largest number of coronavirus (COVID-19) cases in Latin America. As of February 26, 2020 only one infection had been reported in Brazil. By August 19, 2021, the figure had exceeded 20 million. São Paulo is the state with the largest number of patients in the South American country.
Morocco recorded 963,092 confirmed cases of coronavirus (COVID-19) in 2021. The annual number of cases increased compared to the 439,193 registered throughout the previous year. The number of tests, deaths, and recoveries also increased in 2021. In contrast, active cases declined to 8,050 as of December 31, 2021, compared to 24,301 as of the end of 2020.
The COVID-19 pandemic is first and foremost a health shock, but the secondary economic shock is equally formidable. Access to timely, policy-relevant information on the awareness of, responses to and impacts of the health situation and related restrictions are critical to effectively design, target and evaluate programme and policy interventions. This research project investigates the main socioeconomic impacts of the pandemic on UNHCR people of concern (PoC) – and nationals where possible – in terms of access to information, services and livelihoods opportunities. Two regions were targeted: the Greater Metropolitan Area and the Northern region. Two rounds of data collection took place for this survey, with the purpose of following up with the respondents.
Household
Sample survey data [ssd]
UNHCR’s ProGres database in Costa Rica contains 47,491 registered individuals of which 30,494 are active. Of the 30,494 active individuals registered in the database, 22,487 have a known location as well as a listed primary phone number. Phone penetration rates are high among the PoC population in Costa Rica with 9 out of 10 families having a phone number registered in the ProGres database. This list constitutes just over 22% of the total estimated PoC population living in Costa Rica. As such, this final list serves as the first-choice sampling frame for the phone survey. In addition, two regions of Costa Rica were identified for targeted sampling of PoC following discussion with the UNHCR country team and regional bureau and based on information captured in the ProGres database. These include the Greater Metropolitan Area (GAM, for its acronym in Spanish) inclusive of the capital San Jose and the Northern region. Moreover, it was identified that understanding differences across sub-groups based on country of origin was essential for operational needs. In the GAM the biggest groups are Nicaraguans (67%), Venezuelans (13%) and Cubans (11%). Alternatively, in the North Nicaraguans represent 90% of the PoC population. Based on the above, a sampling strategy was proposed based on four separate strata in order to adequately represent the regions and sub-groups of interest: 1.)GAM – Nicaragua stratum: Nicaraguan PoC in GAM; 2.) GAM – Venezuela stratum: Venezuelan PoC in GAM; 3.) GAM – Cuba stratum: Cuban PoC in GAM; and 4.) North – Nicaragua stratum: Nicaraguan PoC in the North.
Computer Assisted Telephone Interview [cati]
Questionnaire contained the following sections: consent, knowledge, behaviour, access, employment, income, food security, concerns, resilience, networks, demographics
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.