As of January 1, 2025, the total number of coronavirus (COVID-19) cases in Italy amounted to over 26.9 million, approximately 218,000 of which were active cases. Moreover, the number of people who recovered or were discharged from hospital after contracting the virus reached over 26.5 million, while the number of deceased was equal to 198,638. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Italy went through five coronavirus waves during the pandemic. As of January 8, 2025, the number of active coronavirus cases in the country was equal to approximately 203,305. On January 23, 2022, there were 2,734,906 active infections in Italy, the highest figure since the start of the pandemic. Furthermore, the total number of cases (including active cases, recoveries, and deaths) in Italy reached 26.9 million, with the region mostly hit by the virus in the country being Lombardy. Despite this notably high number of infections, deaths and hospitalizations remain rather low, thanks to a very high vaccination rate. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
As of January 1, 2025, the number of active coronavirus (COVID-19) infections in Italy was approximately 218,000. Among these, 42 infected individuals were being treated in intensive care units. Another 1,332 individuals infected with the coronavirus were hospitalized with symptoms, while approximately 217,000 thousand were in isolation at home. The total number of coronavirus cases in Italy reached over 26.9 million (including active cases, individuals who recovered, and individuals who died) as of the same date. The region mostly hit by the spread of the virus was Lombardy, which counted almost 4.4 million cases.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
As of May 5, 2021, there were 218,829 active cases of coronavirus (COVID-19) in Hungary. By this date, 538,965 people were cured from the disease. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
This map shows recent COVID-19 Trends with arrows that represent each county's recent trend history, and weekly new case counts for U.S. counties. The map data is updated weekly and featured in this storymap.It shows COVID-19 Trend for the most recent Monday with a colored arrow for each county. The larger the arrow, the longer the county has had this trend. An up arrow indicates the number of active cases continue upward. A down arrow indicates the number of active cases is going down. The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020. This map is updated every Tuesday based on data through the previous Sunday. See also this version of the map for additional perspective.COVID-19 Trends show how each county is doing and are updated daily. We base the trend assignment on the number of new cases in the past two weeks and the number of active cases per 100,000 people. To learn the details for how trends are assigned, see the full methodology. There are five trends:Emergent - New cases for the first time or in counties that have had zero new cases for 60 or more days.Spreading - Low to moderate rates of new cases each day. Likely controlled by local policies and individuals taking measures such as wearing masks and curtailing unnecessary activities.Epidemic - Accelerating and uncontrolled rates of new cases.Controlled - Very low rates of new cases.End Stage - One or fewer new cases every 5 days in larger populations and fewer in rural areas.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.
As of November 22, 2021, Africa had 395,868 active cases of coronavirus (COVID-19). Algeria was the leading country, followed by Rwanda. The countries reported 59,672 and 53,370 people still infected with the disease, respectively. By the same date, the cumulative number of coronavirus in Africa reached more than 8.66 million, while there were 222,276 deaths due to the disease, and 8,046,244 recoveries.
As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials t
Listing of Washoe County COVID-19 case data, by day posted to public dashboard. This table is based on best available information from the Washoe County Health District. Not all fields are populated for all dates.Name FieldName FieldType Comment
OBJECTID OBJECTID ObjectID System generated unique ID
Date Reported reportdt Date Effective date of this row of data
Confirmed confirmed Integer Total number of confirmed cases to date
Recovered recovered Integer Number of recoveries to date
Deaths deaths Integer Number of deaths to date
Active active Integer Current number of active cases
Male Male Small Integer Total confirmed cases to date: Male
Female Female Small Integer Total confirmed cases to date: Female
OtherGender GenderOther Small Integer Total confirmed cases to date: OtherGender
Total Cases 0-9 Age0to9 Small Integer Total confirmed cases to date: Total Cases 0-9
Total Cases 10-19 Age10to19 Small Integer Total confirmed cases to date: Total Cases 10-19
Total Cases 20-29 Age20to29 Small Integer Total confirmed cases to date: Total Cases 20-29
Total Cases 30-39 Age30to39 Small Integer Total confirmed cases to date: Total Cases 30-39
Total Cases 40-49 Age40to49 Small Integer Total confirmed cases to date: Total Cases 40-49
Total Cases 50-59 Age50to59 Small Integer Total confirmed cases to date: Total Cases 50-59
Total Cases 60-69 Age60to69 Small Integer Total confirmed cases to date: Total Cases 60-69
Total Cases 70-79 Age70to79 Small Integer Total confirmed cases to date: Total Cases 70-79
Total Cases 80-89 Age80to89 Small Integer Total confirmed cases to date: Total Cases 80-89
Total Cases 90-99 Age90to99 Small Integer Total confirmed cases to date: Total Cases 90-99
Total Cases 100+ Age100plus Small Integer Total confirmed cases to date: Total Cases 100+
UnknownAge AgeNA Small Integer Total confirmed cases to date: UnknownAge
Native American E_NativeAmerican Integer Total Cases to date: Native American
Asian E_Asian Integer Total Cases to date: Asian
African American E_Black Integer Total Cases to date: African American
Hispanic E_Hispanic Integer Total Cases to date: Hispanic
Hawaiian or Pacific Islander E_HawaiianPacific Integer Total Cases to date: Hawaiian or Pacific Islander
Caucasian E_White Integer Total Cases to date: Caucasian
Multiple E_Multiple Integer Total Cases to date: Multiple
OtherEthnicity E_Other Integer Total Cases to date: OtherEthnicity
EthnicityUnknown E_Unknown Integer Total Cases to date: EthnicityUnknown
New Cases 7 Day Moving Average NewCases7DMA Double Average New Cases over last 7 days
NewCases NewCases Integer New Cases in last day
ActiveCasesAge0to9per100K Age0to9_100K Double Active Cases per 100,000: Age0to9
ActiveCasesAge10to19per100K Age10to19_100K Double Active Cases per 100,000: Age10to19
ActiveCasesAge20to29per100K Age20to29_100K Double Active Cases per 100,000: Age20to29
ActiveCasesAge30to39per100K Age30to39_100K Double Active Cases per 100,000: Age30to39
ActiveCasesAge40to49per100K Age40to49_100K Double Active Cases per 100,000: Age40to49
ActiveCasesAge50to59per100K Age50to59_100K Double Active Cases per 100,000: Age50to59
ActiveCasesAge60to69per100K Age60to69_100K Double Active Cases per 100,000: Age60to69
ActiveCasesAge70to79per100K Age70to79_100K Double Active Cases per 100,000: Age70to79
ActiveCasesAge80to89per100K Age80to89_100K Double Active Cases per 100,000: Age80to89
ActiveCasesAge90to99per100K Age90to99_100K Double Active Cases per 100,000: Age90to99
ActiveCasesAge100plusper100K Age100plus_100K Double Active Cases per 100,000: Age100plus
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Given the lack of potential vaccines and effective medications, non-pharmaceutical interventions are the major option to curtail the spread of COVID-19. An accurate estimate of the potential impact of different non-pharmaceutical measures on containing, and identify risk factors influencing the spread of COVID-19 is crucial for planning the most effective interventions to curb the spread of COVID-19 and to reduce the deaths. Additive model-based bivariate causal discovery for scalar factors and multivariate Granger causality tests for time series factors are applied to the surveillance data of lab-confirmed Covid-19 cases in the US, University of Maryland Data (UMD) data, and Google mobility data from March 5, 2020 to August 25, 2020 in order to evaluate the contributions of social-biological factors, economics, the Google mobility indexes, and the rate of the virus test to the number of the new cases and number of deaths from COVID-19. We found that active cases/1,000 people, workplaces, tests done/1,000 people, imported COVID-19 cases, unemployment rate and unemployment claims/1,000 people, mobility trends for places of residence (residential), retail and test capacity were the popular significant risk factor for the new cases of COVID-19, and that active cases/1,000 people, workplaces, residential, unemployment rate, imported COVID cases, unemployment claims/1,000 people, transit stations, mobility trends (transit), tests done/1,000 people, grocery, testing capacity, retail, percentage of change in consumption, percentage of working from home were the popular significant risk factor for the deaths of COVID-19. We observed that no metrics showed significant evidence in mitigating the COVID-19 epidemic in FL and only a few metrics showed evidence in reducing the number of new cases of COVID-19 in AZ, NY and TX. Our results showed that the majority of non-pharmaceutical interventions had a large effect on slowing the transmission and reducing deaths, and that health interventions were still needed to contain COVID-19.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data
According to World Health organisation (WHO) and communiques released variously by Member States, as of 19th of March (2020), there were 15 confirmed cases of novel coronavirus (Covid - 19) in IGAD region: Republic of Djibouti (1), Federal Democratic Republic of Ethiopia (9), Republic of Kenya (7), Federal Republic of Somalia (1) and Republic of Sudan (1).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India COVID-19: As on Date: Total Number of Active Cases data was reported at 6.000 Case in 17 Mar 2025. This stayed constant from the previous number of 6.000 Case for 10 Mar 2025. India COVID-19: As on Date: Total Number of Active Cases data is updated daily, averaging 44,500.500 Case from Mar 2020 (Median) to 17 Mar 2025, with 1580 observations. The data reached an all-time high of 3,745,237.000 Case in 10 May 2021 and a record low of 1.000 Case in 24 Feb 2025. India COVID-19: As on Date: Total Number of Active Cases data remains active status in CEIC and is reported by Ministry of Health and Family Welfare. The data is categorized under High Frequency Database’s Disease Outbreaks – Table IN.HLF006: Disease Outbreaks: Coronavirus 2019: MOHFW.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19: As on Date: Number of Active Cases: Puducherry data was reported at 0.000 Case in 24 Feb 2025. This stayed constant from the previous number of 0.000 Case for 17 Feb 2025. COVID-19: As on Date: Number of Active Cases: Puducherry data is updated daily, averaging 106.500 Case from Mar 2020 (Median) to 24 Feb 2025, with 1574 observations. The data reached an all-time high of 18,277.000 Case in 21 May 2021 and a record low of 0.000 Case in 24 Feb 2025. COVID-19: As on Date: Number of Active Cases: Puducherry data remains active status in CEIC and is reported by Ministry of Health and Family Welfare. The data is categorized under High Frequency Database’s Disease Outbreaks – Table IN.HLF006: Disease Outbreaks: Coronavirus 2019: MOHFW.
As of December 22, 2022, those aged 18 to 24 years had the highest rates of COVID-19 in New York City. The state of New York has been one of the hardest hit U.S. states by the COVID-19 pandemic. This statistic shows rates of COVID-19 cases in New York City by age group, as of December 22, 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19: As on Date: Number of Active Cases: Punjab data was reported at 0.000 Case in 24 Mar 2025. This stayed constant from the previous number of 0.000 Case for 17 Mar 2025. COVID-19: As on Date: Number of Active Cases: Punjab data is updated daily, averaging 259.000 Case from Mar 2020 (Median) to 24 Mar 2025, with 1581 observations. The data reached an all-time high of 79,963.000 Case in 13 May 2021 and a record low of 0.000 Case in 24 Mar 2025. COVID-19: As on Date: Number of Active Cases: Punjab data remains active status in CEIC and is reported by Ministry of Health and Family Welfare. The data is categorized under High Frequency Database’s Disease Outbreaks – Table IN.HLF006: Disease Outbreaks: Coronavirus 2019: MOHFW.
As of January 1, 2025, the total number of coronavirus (COVID-19) cases in Italy amounted to over 26.9 million, approximately 218,000 of which were active cases. Moreover, the number of people who recovered or were discharged from hospital after contracting the virus reached over 26.5 million, while the number of deceased was equal to 198,638. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.