Abstract copyright UK Data Service and data collection copyright owner.
The Evidence for Equality National Survey (EVENS) is a national survey that documents the experiences and attitudes of ethnic and religious minorities in Britain. EVENS was developed by the Centre on the Dynamics of Ethnicity (CoDE) in response to the disproportionate impacts of COVID-19 and is the largest and most comprehensive survey of the lives of ethnic and religious minorities in Britain for more than 25 years. EVENS used pioneering, robust survey methods to collect data in 2021 from 14,200 participants of whom 9,700 identify as from an ethnic or religious minority. The EVENS main dataset, which is available from the UK Data Service under SN 9116, covers a large number of topics including racism and discrimination, education, employment, housing and community, health, ethnic and religious identity, and social and political participation.
The EVENS Teaching Dataset provides a selection of variables in an accessible form to support the use of EVENS in teaching across a range of subjects and levels of study. The dataset includes demographic data and variables to support the analysis of:
Racism, belonging, impact of COVID-19, health, well-being, financial position, political attitudes and trust.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates (ASMRs) for deaths involving COVID-19 by ethnic group, England.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMinority ethnic groups are at increased risk of COVID-19 related mortality or morbidity yet continue to have a disproportionally lower uptake of the vaccine. The importance of adherence to prevention and control measures to keep vulnerable populations and their families safe therefore remains crucial. This research sought to examine the knowledge, perceived risk, and attitudes toward COVID-19 among an ethnically diverse community.MethodsA cross-sectional self-administered questionnaire was implemented to survey ethnic minority participants purposefully recruited from Luton, an ethnically diverse town in the southeast of England. The questionnaire was structured to assess participants knowledge, perceived risk, attitudes toward protective measures as well as the sources of information about COVID-19. The questionnaire was administered online via Qualtrics with the link shared through social media platforms such as Facebook, Twitter, and WhatsApp. Questionnaires were also printed into brochures and disseminated via community researchers and community links to individuals alongside religious, community and outreach organisations. Data were analysed using appropriate statistical techniques, with the significance threshold for all analyses assumed at p = 0.05.Findings1,058 participants (634; 60% females) with a median age of 38 (IQR, 22) completed the survey. National TV and social networks were the most frequently accessed sources of COVID-19 related information; however, healthcare professionals, whilst not widely accessed, were viewed as the most trusted. Knowledge of transmission routes and perceived susceptibility were significant predictors of attitudes toward health-protective practises.Conclusion/recommendationImproving the local information provision, including using tailored communication strategies that draw on trusted sources, including healthcare professionals, could facilitate understanding of risk and promote adherence to health-protective actions.
Approximately one quarter of the UK population have a migration background (first- or second-generation immigrants). Some ethnic minority groups are more likely to be in atypical or flexible employment than the White British majority. In particular during a time of health and economic crisis, such as the COVID–19 pandemic, those ethnic groups were expected to be economically more vulnerable than other groups. This study shows the increased vulnerability of some ethnic minority groups during COVID–19 by looking at their labour market outcomes compared to White British. Specifically, we ask whether it was their disproportionate presence in flexible employment or in shut-down occupations that made some ethnic minority groups vulnerable to adverse labour market outcomes during the COVID–19 recession? Using the COVID–19 recession in the UK as a case study, we employ weighted linear probability models with 2021 data from the Evidence for Equality National Survey (EVENS) to look at changes in economic indicators across ethnic groups and gender. We report heterogeneity in flexible employment rates within the non-White group and between the non-White and the White British group. By using a conditional decomposition method, we aim to show that those ethnic minority groups who were disproportionately on flexible contracts experienced worse economic effects than the White British group. The collection consists of the Stata Do-File which can be used to reproduce the study.
Was it their disproportionate presence in flexible employment or in shut-down occupations that made some ethnic minority groups vulnerable to adverse labour market outcomes during the COVID–19 recession? Using the COVID–19 recession in the UK as a case study, we employ weighted linear probability models with 2021 data from the Evidence for Equality National Survey (EVENS) to look at changes in economic indicators across ethnic groups and gender. We report heterogeneity in flexible employment rates within the non-White group and between the non-White and the White British group. By using a conditional decomposition method, we conclude that those ethnic minority groups who were disproportionately on flexible contracts experienced worse economic effects than the White British group.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
PIONEER: The impact of ethnicity and multi-morbidity on COVID-related outcomes; a primary care supplemented hospitalised dataset Dataset number 3.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 65million cases and more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) and death. Evidence suggests that older patients, those from some ethnic minority groups and those with multiple long-term health conditions have worse outcomes. This secondary care COVID dataset contains granular demographic and morbidity data, supplemented from primary care records, to add to the understanding of patient factors on disease outcomes.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 and 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records and clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).
Available supplementary data: Health data preceding and following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Since the beginning of the COVID-19 pandemic, almost two out of five people of a Chinese background reported having experienced discrimination in Canada. They were the most commonly discriminated against visible minority group, followed by people of Filipino origin (31.6 percent) and Black people (27.6 percent). In comparison, about 12 percent of people who did not belong to a visible minority group said they had experienced discrimination since the beginning of the pandemic.
Monthly COVID-19 death rates per 100,000 population stratified by age group, race/ethnicity, sex, and region, with race/ethnicity by age group and age group by race/ethnicity double stratification
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Counts of coronavirus (COVID-19) related deaths by ethnic group in Wales.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Model estimates of deaths involving the coronavirus (COVID-19) by ethnic group for people in private households in England.
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Citywide/6859-spec. COVID-19 vaccinations administered to Chicago residents based on the reported race-ethnicity and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ··People with an original booster dose: Number of people who have a completed vaccine series and have received at least one additional monovalent dose. This includes people who received a monovalent booster dose and immunocompromised people who received an additional primary dose of COVID-19 vaccine. Monovalent doses were created from the original strain of the virus that causes COVID-19. People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group. Note that each age group has a row where race-ethnicity is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2019 1-year estimates. For some of the age groups by which COVID-19 vaccine has been authorized in the United States, race-ethnicity distributions were specifically reported in the ACS estimates. For others, race-ethnicity distributions were estimated by the Chicago Department of Public Health (CDPH) by weighting the available race-ethnicity distributions, using proportions of constituent age groups. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity) who have each vaccination status as of the date, divided by the estimated number of Chicago residents in each subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Data reported in I-CARE only include doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that c
From July 2021 to June 2022, American Indians or Alaska Natives were the ethnic group reporting the highest death rate from Long COVID per million population in the United States. Among this ethnic group, the mortality rate from COVID-19 was about 1,795 deaths per million population, while nearly 15 individuals per million died due to Long COVID. This statistic shows the death rates from COVID-19 and Long COVID per million population in the U.S. from July 2021 to June 2022, by race and ethnicity.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCOVID-19 has had a disproportionate impact on racial and ethnic minorities compared to White people. Studies have not sufficiently examined how sex and age interact with race/ethnicity, and potentially shape COVID-19 outcomes. We sought to examine disparities in COVID-19 outcomes by race, sex and age over time, leveraging data from Michigan, the only state whose Department of Health and Human Services (DHSS) publishes cross-sectional race, sex and age data on COVID-19.MethodsThis is an observational study using publicly available COVID-19 data (weekly cases, deaths, and vaccinations) from August 31 2020 to June 9 2021. Outcomes for descriptive analysis were age-standardized COVID-19 incidence and mortality rates, case-fatality rates by race, sex, and age, and within-gender and within-race incidence rate ratios and mortality rate ratios. We used descriptive statistics and linear regressions with age, race, and sex as independent variables.ResultsThe within-sex Black-White racial gap in COVID-19 incidence and mortality decreased at a similar rate among men and women but the remained wider among men. As of June 2021, compared to White people, incidence was lower among Asian American and Pacific Islander people by 2644 cases per 100,000 people and higher among Black people by 1464 cases per 100,000 people. Mortality was higher among those aged 60 or greater by 743.6 deaths per 100,000 people vs those 0–39. The interaction between race and age was significant between Black race and age 60 or greater, with an additional 708.5 deaths per 100,000 people vs White people aged 60 or greater. Black people had a higher case fatality rate than White people.ConclusionCOVID-19 incidence, mortality and vaccination patterns varied over time by race, age and sex. Black-White disparities decreased over time, with a larger effect on Black men, and Older Black people were particularly more vulnerable to COVID-19 in terms of mortality. Considering different individual characteristics such as age may further help elucidate the mechanisms behind racial and gender health disparities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hazard ratios of long COVID diagnosis in 3 periods of COVID-19 infection by region of origin.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Model estimates of deaths involving the coronavirus (COVID-19) by ethnic group for people in care homes in England.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
De-identified dataset and corresponding code used to conduct the analysis reported in the manuscript "Incentivizing COVID-19 vaccination among racial/ethnic minority adults in the United States: $209 per dose could convince the hesitant"
According to a report conducted in the United Kingdom in 2020, 50 percent of white women and 46 percent of Black and minority women said they had experienced abuse based on their gender. Additionally, 42 percent of Black and minoritized respondents of color reported having experienced abuse based on their ethnic background. Black women and women of color were also more likely to be targeted by online abuse based on their religion and gender identity.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
NOTE: As of 2/16/2023 this table is no longer being updated. For information on COVID-19 Updated (Bivalent) Booster Coverage, go to https://data.ct.gov/Health-and-Human-Services/COVID-19-Updated-Bivalent-Booster-Coverage-By-Race/8267-bg4w.
Important change as of June 1, 2022
As of June 1, 2022, we will be using 2020 DPH provisional census estimates* to calculate vaccine coverage percentages by age at the state level. 2020 estimates will replace the 2019 estimates that have been used. Caution should be taken when making comparisons of percentages calculated using the 2019 and 2020 census estimates since observed difference may result from the shift in the denominator. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
This table shows the number and percent of people that have initiated COVID-19 vaccination, are fully vaccinated and had additional dose 1 by race / ethnicity and age group.
All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. The age groups in the state-level data tables will also be changing as a result of the switch to the new denominator.
Population size estimates are based on 2019 DPH census estimates until 5/26/2022. From 6/1/2022, 2020 DPH provisional census estimates are used.
In the data shown here, a person who has received at least one dose of COVID-19 vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if he/she has completed a primary vaccination series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the people who have received at least one dose.
A person who completed a Pfizer, Moderna, Novavax or Johnson & Johnson primary series (as defined above) and then had an additional monovalent dose of COVID-19 vaccine is considered to have had additional dose 1. The additional dose may be Pfizer, Moderna, Novavax or Johnson & Johnson and may be a different type from the primary series. For people who had a primary Pfizer or Moderna series, additional dose 1 was counted starting August 18th, 2021. For people with a Johnson & Johnson primary series additional dose 1 was counted starting October 22nd, 2021. For most people, additional dose 1 is a booster. However, additional dose 1 may represent a supplement to the primary series for a people who is moderately or severely immunosuppressed. Bivalent booster administrations are not included in the additional dose 1 calculations.
The percent with at least one dose many be over-estimated, and the percent fully vaccinated and with additional dose 1 may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported.
Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races.
A vaccine coverage percentage cannot be calculated for people classified as NH Other race or NH Unknown race since there are not population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race.
Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. This includes doses given to residents of CT and to residents of other states vaccinated in CT. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records reported to CT WiZ. However, once CT residents who have received doses in each jurisdiction are added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed.
Note: This dataset takes the place of the original "COVID-19 Vaccinations by Race/Ethnicity" dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/xkga-ifz3 ), which will not be updated after 5/20/2021 and “COVID-19 Vaccinations by Race / Ethnicity” dataset (https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Race-Ethnicity/ybkg-w5x2), which will not be updated after 10/20/2021.
These tables will stop being updated after June 1, 2023. COVID-19 vaccination reporting is expected to resume when a new COVID-19 vaccination formulation is authorized. As 4/22/2023, CDC recommends bivalent vaccine for everyone regardless of age and whether or not the person has had prior monovalent vaccine. This table shows the cumulative number and percentage of people who have received an updated (bivalent) COVID-19 vaccination by race/ethnicity and age group for people 5 years and over. • Data are reported weekly on Thursday and include doses administered to Saturday of the previous week. • All data in this report are preliminary. Data for previous weeks may be changed because of delays in reporting, deduplication, or correction of errors. • The table groups people based on their current age and excludes people known to be deceased. • The analyses here are based on data reported to CT WiZ which is the immunization information system for CT. Connecticut COVID-19 Vaccine Program providers are required to report to CT WiZ all COVID-19 doses administered in CT including to CT residents and to residents of other jurisdictions. CT Wiz also receives records on CT residents vaccinated in other jurisdictions and by federal entities which share data with CT WiZ electronically (currently: RI, NJ, New York City, DE, Philadelphia, NV, Indian Health Service, Department of Veterans Affairs (doses administered since 11/2022)). Electronic data exchange is being added jurisdiction-by-jurisdiction. Once a jurisdiction is added to CT WiZ, the records for residents of that jurisdiction vaccinated in CT are removed. For example, when CT residents vaccinated in NYC were added, NYC residents vaccinated in CT were removed. • Population size estimates used to calculate cumulative percentages are based on 2020 DPH provisional census estimates*. • Race and ethnicity data may be self-reported or taken from an existing electronic health care record. Reported race and ethnicity information is used to create a single race/ethnicity variable. People with Hispanic ethnicity are classified as Hispanic regardless of reported race. People with a missing ethnicity are classified as non-Hispanic. People with more than one race are classified as multiple races. A vaccine coverage percentage cannot be calculated for people classified as NH (non-Hispanic) Other race or NH Unknown race since there are no population size estimates for these groups. Data quality assurance activities suggest that in at least some cases NH Other may represent a missing value. Vaccine coverage estimates in specific race/ethnicity groups may be underestimated as result of the classification of records as NH Unknown Race or NH Other Race. • Cumulative percentage estimates have been capped at 100%. Observed percentages may be higher than 100% for multiple reasons, inaccuracies in the census denominators or reporting errors. DPH Provisional State and County Characteristics Estimates April 1, 2020. Hayes L, Abdellatif E, Jiang Y, Backus K (2022) Connecticut DPH Provisional April 1, 2020, State Population Estimates by 18 age groups, sex, and 6 combined race and ethnicity groups. Connecticut Department of Public Health, Health Statistics & Surveillance, SAR, Hartford, CT.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Odds ratios for the risk of dying from the coronavirus (COVID-19) by ethnicity in England and Wales.