100+ datasets found
  1. Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by...

    • statista.com
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 28, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

    Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

    U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

  2. d

    MD COVID-19 - Confirmed Deaths by Age Distribution

    • catalog.data.gov
    • opendata.maryland.gov
    Updated Oct 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). MD COVID-19 - Confirmed Deaths by Age Distribution [Dataset]. https://catalog.data.gov/dataset/md-covid-19-confirmed-deaths-by-age-distribution
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    opendata.maryland.gov
    Description

    Note: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents by age: 0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79; 80+; Unknown. Description The MD COVID-19 - Confirmed Deaths by Age Distribution data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by designated age ranges. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Probable Deaths by Age Distribution data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  3. COVID-19 deaths reported in the U.S. as of June 14, 2023, by age

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 deaths reported in the U.S. as of June 14, 2023, by age [Dataset]. https://www.statista.com/statistics/1191568/reported-deaths-from-covid-by-age-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Jun 14, 2023
    Area covered
    United States
    Description

    Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.

  4. Share of U.S. COVID-19 patients who died from Jan-May, 2020, by health...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of U.S. COVID-19 patients who died from Jan-May, 2020, by health condition [Dataset]. https://www.statista.com/statistics/1127644/covid-19-mortality-by-age-and-health-condition-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 22, 2020 - May 30, 2020
    Area covered
    United States
    Description

    It was estimated that around 20 percent of those with underlying health conditions who had COVID-19 in the United States from January 22 to May 30, 2020 died from the disease, compared to just 2 percent of COVID-patients without underlying health conditions. Underlying health conditions such as cardiovascular disease, chronic lung disease, or diabetes greatly increase the chance of death due to COVID-19. This statistic shows the percentage of people in the U.S. who had COVID-19 from January 22 to May 30, 2020 with and without underlying health conditions who died, by age.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  5. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/CDC/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  6. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  7. f

    Data_Sheet_1_The risk profile of patients with COVID-19 as predictors of...

    • datasetcatalog.nlm.nih.gov
    Updated Jul 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sturkenboom, Miriam; Bouhaddani, Said el; Royo, Albert Cid; Rahimi, Ezat; Ahmadizar, Fariba; Sigari, Naseh; Shahisavandi, Mina; Azizi, Mohammad (2022). Data_Sheet_1_The risk profile of patients with COVID-19 as predictors of lung lesions severity and mortality—Development and validation of a prediction model.PDF [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000358035
    Explore at:
    Dataset updated
    Jul 26, 2022
    Authors
    Sturkenboom, Miriam; Bouhaddani, Said el; Royo, Albert Cid; Rahimi, Ezat; Ahmadizar, Fariba; Sigari, Naseh; Shahisavandi, Mina; Azizi, Mohammad
    Description

    ObjectiveWe developed and validated a prediction model based on individuals' risk profiles to predict the severity of lung involvement and death in patients hospitalized with coronavirus disease 2019 (COVID-19) infection.MethodsIn this retrospective study, we studied hospitalized COVID-19 patients with data on chest CT scans performed during hospital stay (February 2020-April 2021) in a training dataset (TD) (n = 2,251) and an external validation dataset (eVD) (n = 993). We used the most relevant demographical, clinical, and laboratory variables (n = 25) as potential predictors of COVID-19-related outcomes. The primary and secondary endpoints were the severity of lung involvement quantified as mild (≤25%), moderate (26–50%), severe (>50%), and in-hospital death, respectively. We applied random forest (RF) classifier, a machine learning technique, and multivariable logistic regression analysis to study our objectives.ResultsIn the TD and the eVD, respectively, the mean [standard deviation (SD)] age was 57.9 (18.0) and 52.4 (17.6) years; patients with severe lung involvement [n (%):185 (8.2) and 116 (11.7)] were significantly older [mean (SD) age: 64.2 (16.9), and 56.2 (18.9)] than the other two groups (mild and moderate). The mortality rate was higher in patients with severe (64.9 and 38.8%) compared to moderate (5.5 and 12.4%) and mild (2.3 and 7.1%) lung involvement. The RF analysis showed age, C reactive protein (CRP) levels, and duration of hospitalizations as the three most important predictors of lung involvement severity at the time of the first CT examination. Multivariable logistic regression analysis showed a significant strong association between the extent of the severity of lung involvement (continuous variable) and death; adjusted odds ratio (OR): 9.3; 95% CI: 7.1–12.1 in the TD and 2.6 (1.8–3.5) in the eVD.ConclusionIn hospitalized patients with COVID-19, the severity of lung involvement is a strong predictor of death. Age, CRP levels, and duration of hospitalizations are the most important predictors of severe lung involvement. A simple prediction model based on available clinical and imaging data provides a validated tool that predicts the severity of lung involvement and death probability among hospitalized patients with COVID-19.

  8. Data from: Estimated Deaths, Intensive Care Admissions and Hospitalizations...

    • figshare.com
    xlsx
    Updated Feb 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Fisman (2023). Estimated Deaths, Intensive Care Admissions and Hospitalizations Averted in Canada during the COVID-19 Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.14036549.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Fisman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Canada
    Description

    These datasets explore disparities in COVID-19 mortality observed in the US and Canada between January 2020 and early March 2021. Table 1 provides counts of deaths, hospitalizations, ICU admissions, and cases, by age, for Ontario, Canada (Canada's most populous province).

    Table 2 estimates deaths averted by Canada's response to the COVID-19 pandemic, relative to that in the United States, by "Canada-standardizing" the US epidemic (i.e., by applying US age-specific mortality to Canadian populations, in order to estimate the deaths that would have occurred in a Canadian pandemic with the same rates of death as have been observed in the US). Observed Canadian deaths are compared to "expected" deaths with a US-like response in order to estimate both deaths averted and SMR (Table 2).

    As Canadian age groups for purposes of death reporting are slightly different from those used in the US (e.g., 0-17 in the US vs. 0-19 in Canada), we reallocate Canadian deaths based on proportions of deaths occurring in 2-year age categories in Ontario (Table 1).

    Ontario age-specific case-fatality is used to inflate the deaths averted, in order to estimate cases averted. Ontario age-specific hospitalization and ICU risk (again derived from Table 1) are used to estimate hospitalizations and ICU admissions averted (Table 2).

    As of August 9, 2022, a new dataset has been added which applies the methodology described above to compare deaths in Canada to those in the United Kingdom, France, and Australia. Estimates of QALY loss, and healthcare costs averted, have also been added. Uncertainty bounds are estimated either as parametric confidence intervals, or as upper and lower bound 95% credible intervals through simulation (implemented using the random draw funding in Microsoft Excel).

    Errors in confidence intervals for QALY losses in France and Australia corrected February 28, 2023.

  9. COVID-19 death rates in New York City as of December 22, 2022, by age group

    • statista.com
    Updated Dec 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in New York City as of December 22, 2022, by age group [Dataset]. https://www.statista.com/statistics/1109867/coronavirus-death-rates-by-age-new-york-city/
    Explore at:
    Dataset updated
    Dec 23, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    New York
    Description

    The death rate in New York City for adults aged 75 years and older was around 4,135 per 100,000 people as of December 22, 2022. The risk of developing more severe illness from COVID-19 increases with age, and the virus also poses a particular threat to people with underlying health conditions.

    What is the death toll in NYC? The first coronavirus-related death in New York City was recorded on March 11, 2020. Since then, the total number of confirmed deaths has reached 37,452 while there have been 2.6 million positive tests for the disease. The number of daily new deaths in New York City has fallen sharply since nearly 600 residents lost their lives on April 7, 2020. A significant number of fatalities across New York State have been linked to long-term care facilities that provide support to vulnerable elderly adults and individuals with physical disabilities.

    The impact on the counties of New York State Nearly every county in the state of New York has recorded at least one death due to the coronavirus. Outside of New York City, the counties of Nassau, Suffolk, and Westchester have confirmed over 11,500 deaths between them. When analyzing the ratio of deaths to county population, Rockland had one of the highest COVID-19 death rates in New York State in 2021. The county, which has approximately 325,700 residents, had a death rate of around 29 per 10,000 people in April 2021.

  10. COVID-19 Deaths Mapping Tool - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2020). COVID-19 Deaths Mapping Tool - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/covid-19-deaths-mapping-tool
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing

  11. Features extracted for all the analyses by state used to predict the...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ricardo Ramírez-Aldana; Juan Carlos Gomez-Verjan; Omar Yaxmehen Bello-Chavolla; Carmen García-Peña (2023). Features extracted for all the analyses by state used to predict the mortality risk from COVID-19 among tested individuals in Mexico. [Dataset]. http://doi.org/10.1371/journal.pone.0254884.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ricardo Ramírez-Aldana; Juan Carlos Gomez-Verjan; Omar Yaxmehen Bello-Chavolla; Carmen García-Peña
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    Features extracted for all the analyses by state used to predict the mortality risk from COVID-19 among tested individuals in Mexico.

  12. Table_1_Age-Related Risk Factors and Complications of Patients With...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Han Zhang; Yingying Wu; Yuqing He; Xingyuan Liu; Mingqian Liu; Yuhong Tang; Xiaohua Li; Guang Yang; Gang Liang; Shabei Xu; Minghuan Wang; Wei Wang (2023). Table_1_Age-Related Risk Factors and Complications of Patients With COVID-19: A Population-Based Retrospective Study.XLSX [Dataset]. http://doi.org/10.3389/fmed.2021.757459.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Han Zhang; Yingying Wu; Yuqing He; Xingyuan Liu; Mingqian Liu; Yuhong Tang; Xiaohua Li; Guang Yang; Gang Liang; Shabei Xu; Minghuan Wang; Wei Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: To study the differences in clinical characteristics, risk factors, and complications across age-groups among the inpatients with the coronavirus disease 2019 (COVID-19).Methods: In this population-based retrospective study, we included all the positive hospitalized patients with COVID-19 at Wuhan City from December 29, 2019 to April 15, 2020, during the first pandemic wave. Multivariate logistic regression analyses were used to explore the risk factors for death from COVID-19. Canonical correlation analysis (CCA) was performed to study the associations between comorbidities and complications.Results: There are 36,358 patients in the final cohort, of whom 2,492 (6.85%) died. Greater age (odds ration [OR] = 1.061 [95% CI 1.057–1.065], p < 0.001), male gender (OR = 1.726 [95% CI 1.582–1.885], p < 0.001), alcohol consumption (OR = 1.558 [95% CI 1.355–1.786], p < 0.001), smoking (OR = 1.326 [95% CI 1.055–1.652], p = 0.014), hypertension (OR = 1.175 [95% CI 1.067–1.293], p = 0.001), diabetes (OR = 1.258 [95% CI 1.118–1.413], p < 0.001), cancer (OR = 1.86 [95% CI 1.507–2.279], p < 0.001), chronic kidney disease (CKD) (OR = 1.745 [95% CI 1.427–2.12], p < 0.001), and intracerebral hemorrhage (ICH) (OR = 1.96 [95% CI 1.323–2.846], p = 0.001) were independent risk factors for death from COVID-19. Patients aged 40–80 years make up the majority of the whole patients, and them had similar risk factors with the whole patients. For patients aged

  13. Z

    Data from: COVID-19 Mortality Risk Assessment Among Various Age Groups Using...

    • data.niaid.nih.gov
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pawan Verma (2020). COVID-19 Mortality Risk Assessment Among Various Age Groups Using Phylogenetic Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4007665
    Explore at:
    Dataset updated
    Sep 11, 2020
    Authors
    Pawan Verma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets used for the analysis titled Phylogenomic analysis of all available COVID-19 genomes and its influence on mortality

  14. s

    CoVid Plots and Analysis

    • orda.shef.ac.uk
    • datasetcatalog.nlm.nih.gov
    • +2more
    txt
    Updated Feb 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colin Angus (2023). CoVid Plots and Analysis [Dataset]. http://doi.org/10.15131/shef.data.12328226.v60
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 26, 2023
    Dataset provided by
    The University of Sheffield
    Authors
    Colin Angus
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19Plots and analysis relating to the coronavirus pandemic. Includes five sets of plots and associated R code to generate them.1) HeatmapsUpdated every few days - heatmaps of COVID-19 case and death trajectories for Local Authorities (or equivalent) in England, Wales, Scotland, Ireland and Germany.2) All cause mortalityUpdated on Tuesday (for England & Wales), Wednesday (for Scotland) and Friday (for Northern Ireland) - analysis and plots of weekly all-cause deaths in 2020 compared to previous years by country, age, sex and region. Also a set of international comparisons using data from mortality.org3) ExposuresNo longer updated - mapping of potential COVID-19 mortality exposure at local levels (LSOAs) in England based on the age-sex structure of the population and levels of poor health.There is also a Shiny app which creates slightly lower resolution versions of the same plots online, which you can find here: https://victimofmaths.shinyapps.io/covidmapper/, on GitHub https://github.com/VictimOfMaths/COVIDmapper and uploaded to this record4) Index of Multiple Deprivation No longer updated - preliminary analysis of the inequality impacts of COVID-19 based on Local Authority level cases and levels of deprivation. 5) Socioeconomic inequalities. No longer updated (unless ONS release more data) - Analysis of published ONS figures of COVID-19 and other cause mortality in 2020 compared to previous years by deprivation decile.Latest versions of plots and associated analysis can be found on Twitter: https://twitter.com/victimofmathsThis work is described in more detail on the UK Data Service Impact and Innovation Lab blog: https://blog.ukdataservice.ac.uk/visualising-high-risk-areas-for-covid-19-mortality/Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.1.0.http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

  15. I

    The risk of COVID-19 death is much greater and age dependent with type I IFN...

    • dev.immport.org
    • immport.org
    • +1more
    url
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies [Dataset]. http://doi.org/10.21430/M32LEYGFC5
    Explore at:
    urlAvailable download formats
    Dataset updated
    Dec 19, 2022
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    To estimate the fatality rate upon infection with SARS-CoV-2 in unvaccinated subjects carrying auto-Abs against type I IFNs across age groups and sexes

  16. Covid-19 Age Risk Factor

    • kaggle.com
    zip
    Updated Nov 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Shahane (2021). Covid-19 Age Risk Factor [Dataset]. https://www.kaggle.com/saurabhshahane/covid19-age-risk-factor
    Explore at:
    zip(12026 bytes)Available download formats
    Dataset updated
    Nov 7, 2021
    Authors
    Saurabh Shahane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context

    Excel dataset with the following columns: Case No., Age, Sex, Nationality, Status, Transmission. Data were extracted from https://endcov.ph/cases/

    Acknowledgements

    Medina, Michael Arieh (2020), “Data for: Age as a Risk Factor of COVID-19 Mortality in the Philippines”, Mendeley Data, V2, doi: 10.17632/gxxnmgcfnd.2

  17. COVID-19 Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meir Nizri (2022). COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/meirnizri/covid19-dataset
    Explore at:
    zip(4890659 bytes)Available download formats
    Dataset updated
    Nov 13, 2022
    Authors
    Meir Nizri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.

    The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.

    content

    The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.

    • sex: 1 for female and 2 for male.
    • age: of the patient.
    • classification: covid test findings. Values 1-3 mean that the patient was diagnosed with covid in different degrees. 4 or higher means that the patient is not a carrier of covid or that the test is inconclusive.
    • patient type: type of care the patient received in the unit. 1 for returned home and 2 for hospitalization.
    • pneumonia: whether the patient already have air sacs inflammation or not.
    • pregnancy: whether the patient is pregnant or not.
    • diabetes: whether the patient has diabetes or not.
    • copd: Indicates whether the patient has Chronic obstructive pulmonary disease or not.
    • asthma: whether the patient has asthma or not.
    • inmsupr: whether the patient is immunosuppressed or not.
    • hypertension: whether the patient has hypertension or not.
    • cardiovascular: whether the patient has heart or blood vessels related disease.
    • renal chronic: whether the patient has chronic renal disease or not.
    • other disease: whether the patient has other disease or not.
    • obesity: whether the patient is obese or not.
    • tobacco: whether the patient is a tobacco user.
    • usmr: Indicates whether the patient treated medical units of the first, second or third level.
    • medical unit: type of institution of the National Health System that provided the care.
    • intubed: whether the patient was connected to the ventilator.
    • icu: Indicates whether the patient had been admitted to an Intensive Care Unit.
    • date died: If the patient died indicate the date of death, and 9999-99-99 otherwise.
  18. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  19. Statistics by variable (minimum, maximum, and quartiles) corresponding to...

    • figshare.com
    xls
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ricardo Ramírez-Aldana; Juan Carlos Gomez-Verjan; Omar Yaxmehen Bello-Chavolla; Carmen García-Peña (2023). Statistics by variable (minimum, maximum, and quartiles) corresponding to the effects by state* over the mortality risk from COVID-19 among tested individuals (MRt) under the GGWR and similar effects and p-values associated with a global model (all models consider a Poisson distribution, offset term**, and logarithmic link function). [Dataset]. http://doi.org/10.1371/journal.pone.0254884.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ricardo Ramírez-Aldana; Juan Carlos Gomez-Verjan; Omar Yaxmehen Bello-Chavolla; Carmen García-Peña
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statistics by variable (minimum, maximum, and quartiles) corresponding to the effects by state* over the mortality risk from COVID-19 among tested individuals (MRt) under the GGWR and similar effects and p-values associated with a global model (all models consider a Poisson distribution, offset term**, and logarithmic link function).

  20. f

    Data from: Risk factors associated with delay in diagnosis and mortality in...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Mar 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fachi, Mariana Millan; de Fátima Cobre, Alexandre; Domingos, Eric Luiz; Tonin, Fernanda Stumpf; de Oliveira Vilhena, Raquel; Pontarolo, Roberto; Böger, Beatriz (2021). Risk factors associated with delay in diagnosis and mortality in patients with COVID-19 in the city of Rio de Janeiro, Brazil [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000886171
    Explore at:
    Dataset updated
    Mar 24, 2021
    Authors
    Fachi, Mariana Millan; de Fátima Cobre, Alexandre; Domingos, Eric Luiz; Tonin, Fernanda Stumpf; de Oliveira Vilhena, Raquel; Pontarolo, Roberto; Böger, Beatriz
    Area covered
    Brazil, Rio de Janeiro
    Description

    Abstract We investigated the predictors of delay in the diagnosis and mortality of patients with COVID-19 in Rio de Janeiro, Brazil. A cohort of 3,656 patients were evaluated (Feb-Apr 2020) and patients’ sociodemographic characteristics, and social development index (SDI) were used as determinant factors of diagnosis delays and mortality. Kaplan-Meier survival analyses, time-dependent Cox regression models, and multivariate logistic regression analyses were conducted. The median time from symptoms onset to diagnosis was eight days (interquartile range [IQR] 7.23-8.99 days). Half of the patients recovered during the evaluated period, and 8.3% died. Mortality rates were higher in men. Delays in diagnosis were associated with male gender (p = 0.015) and patients living in low SDI areas (p < 0.001). The age groups statistically associated with death were: 70-79 years, 80-89 years, and 90-99 years. Delays to diagnosis greater than eight days were also risk factors for death. Delays in diagnosis and risk factors for death from COVID-19 were associated with male gender, age under 60 years, and patients living in regions with lower SDI. Delays superior to eight days to diagnosis increased mortality rates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
Organization logo

Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 28, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Feb 12, 2020 - Mar 16, 2020
Area covered
United States
Description

Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

Search
Clear search
Close search
Google apps
Main menu