As of March 13, Austria had the highest rate of coronavirus (COVID-19) cases reported in the previous seven days in Europe at 224 cases per 100,000. Luxembourg and Slovenia have recorded 122 and 108 cases per 100,000 people respectively in the past week. Furthermore, San Marino had a rate of 97 cases in the last seven days.
Since the pandemic outbreak, France has been the worst affected country in Europe with over 38.3 million cases as of January 13. The overall incidence of cases in every European country can be found here.
For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
As of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
https://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence
The official information on the spread of the epidemic in France was initially rather fragmented. Various initiatives have attempted to structure it in the form of free data. Despite this work, however, the data were often difficult to exploit in the raw state within cartographic tools.
The purpose of this repository is to consolidate the information and make it available in open and easily reusable formats to produce maps. The preferred pivot format is GeoJson.
The data are proposed according to several granularities: regions and departments. The data at the department’s grid was initially fragmented, however under the impetus of free initiatives such as OpenCovid19, more precise data on the epidemic was made available by Santé publique France.
For more details or the latest version of the data, see https://github.com/kalisio/covid-19.
For more information about KALISIO visit our website.
As of January 18, 2023, Portugal had the highest COVID-19 vaccination rate in Europe having administered 272.78 doses per 100 people in the country, while Malta had administered 258.49 doses per 100. The UK was the first country in Europe to approve the Pfizer/BioNTech vaccine for widespread use and began inoculations on December 8, 2020, and so far have administered 224.04 doses per 100. At the latest data, Belgium had carried out 253.89 doses of vaccines per 100 population. Russia became the first country in the world to authorize a vaccine - named Sputnik V - for use in the fight against COVID-19 in August 2020. As of August 4, 2022, Russia had administered 127.3 doses per 100 people in the country.
The seven-day rate of cases across Europe shows an ongoing perspective of which countries are worst affected by the virus relative to their population. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of the scoping review is to map out evidence based research on the Covid-19 pandemic impact on the European cities. The review questions touch three broad areas of interest:
The search was conducted in June 2022, with the final body of literature consisting of 3,994 publication references from EBSCOhost, APA Psyc, Scopus, Web of Science, Proquest, Wiley, Sage, JSTOR, Tailor&Francis, Oxford Journals databases (Fig. 1). The following English words were searched for in titles, abstracts and keywords in the databases: (pandemic OR ‘Covid-19’) AND (city OR cities OR urban*). We used the following criteria for articles to be included in the study: 1) peer and non-peer-reviewed empirical papers in journals published in English from January 2019 to June 2022; 2) included studies where the impact of COVID-19 pandemic on European city/cities was an explicit variable of interest; 3) contained analysis of empirical data on cities or urban life retrieved or collected within and explicitly addressing the COVID-19 pandemic; 4) addressed the social, cultural, economic, political and socio-geographical aspects of a city. We excluded from our sample papers that were: 1) theoretical and opinion literature, media press releases, reports, MA dissertations and PhD theses; 2) secondary research papers (reviews, meta-analyses); 3) papers not in English; 4) studies about non-European cities; 5) studies which do not explicitly address the impact of the COVID-19 pandemic on cities; 6) studies addressing a city as a variable of secondary importance; 7) studies outside the scope of the COVID-19 pandemic, published before December 2019; 8) studies not addressing the social or human aspects of urban life.
The final database of coded documents consisted of 138 empirical articles presenting findings on the impact of the COVID-19 pandemic on European cities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
At the height of the coronavirus pandemic, on the last day of March 2020, Wikipedia in all languages broke a record for most traffic in a single day. Since the breakout of the Covid-19 pandemic at the start of January, tens if not hundreds of millions of people have come to Wikipedia to read - and in some cases also contribute - knowledge, information and data about the virus to an ever-growing pool of articles. Our study focuses on the scientific backbone behind the content people across the world read: which sources informed Wikipedia’s coronavirus content, and how was the scientific research on this field represented on Wikipedia. Using citation as readout we try to map how COVID-19 related research was used in Wikipedia and analyse what happened to it before and during the pandemic. Understanding how scientific and medical information was integrated into Wikipedia, and what were the different sources that informed the Covid-19 content, is key to understanding the digital knowledge echosphere during the pandemic. To delimitate the corpus of Wikipedia articles containing Digital Object Identifier (DOI), we applied two different strategies. First we scraped every Wikipedia pages form the COVID-19 Wikipedia project (about 3000 pages) and we filtered them to keep only page containing DOI citations. For our second strategy, we made a search with EuroPMC on Covid-19, SARS-CoV2, SARS-nCoV19 (30’000 sci papers, reviews and preprints) and a selection on scientific papers form 2019 onwards that we compared to the Wikipedia extracted citations from the english Wikipedia dump of May 2020 (2’000’000 DOIs). This search led to 231 Wikipedia articles containing at least one citation of the EuroPMC search or part of the wikipedia COVID-19 project pages containing DOIs. Next, from our 231 Wikipedia articles corpus we extracted DOIs, PMIDs, ISBNs, websites and URLs using a set of regular expressions. Subsequently, we computed several statistics for each wikipedia article and we retrive Atmetics, CrossRef and EuroPMC infromations for each DOI. Finally, our method allowed to produce tables of citations annotated and extracted infromations in each wikipadia articles such as books, websites, newspapers.Files used as input and extracted information on Wikipedia's COVID-19 sources are presented in this archive.See the WikiCitationHistoRy Github repository for the R codes, and other bash/python scripts utilities related to this project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the data for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Data SourcesWorld Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-casesMinistry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Update 2.3.2021: the dashboard is no longer available online, this entry remains for archival purposes.
A dashboard set up by SynerGIS Information Systems shows maps and statistics on coronavirus COVID-19 cases at state level and over time. The data is based on publicly available information from the Ministry of Social Affairs.
After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, the country had to face four new harsh waves of contagion. As of January 1, 2025, the total number of cases reported by the authorities reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto and the southern region of Campania followed in the list. When adjusting these figures for the population size of each region, however, the picture changed, with the region of Veneto being the area where the virus had the highest relative incidence. Coronavirus in Italy Italy has been among the countries most impacted by the coronavirus outbreak. Moreover, the number of deaths due to coronavirus recorded in Italy is significantly high, making it one of the countries with the highest fatality rates worldwide, especially in the first stages of the pandemic. In particular, a very high mortality rate was recorded among patients aged 80 years or older. Impact on the economy The lockdown imposed during the Spring 2020, and other measures taken in the following months to contain the pandemic, forced many businesses to shut their doors and caused industrial production to slow down significantly. As a result, consumption fell, with the sectors most severely hit being hospitality and tourism, air transport, and automotive. Several predictions about the evolution of the global economy were published at the beginning of the pandemic, based on different scenarios about the development of the pandemic. According to the official results, it appeared that the coronavirus outbreak had caused Italy’s GDP to shrink by approximately nine percent in 2020.
This dataset is based on the "Dataset of confirmed cases by date, age, sex and province" published by Sciensano beginning on March 31st, 2020.We added geographical points to display data on a map, based on the province names.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
As of March 13, Austria had the highest rate of coronavirus (COVID-19) cases reported in the previous seven days in Europe at 224 cases per 100,000. Luxembourg and Slovenia have recorded 122 and 108 cases per 100,000 people respectively in the past week. Furthermore, San Marino had a rate of 97 cases in the last seven days.
Since the pandemic outbreak, France has been the worst affected country in Europe with over 38.3 million cases as of January 13. The overall incidence of cases in every European country can be found here.
For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.