13 datasets found
  1. Coronavirus (COVID-19) cases in Italy as of January 2025, by region

    • statista.com
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Coronavirus (COVID-19) cases in Italy as of January 2025, by region [Dataset]. https://www.statista.com/statistics/1099375/coronavirus-cases-by-region-in-italy/
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy
    Description

    After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, the country had to face four new harsh waves of contagion. As of January 1, 2025, the total number of cases reported by the authorities reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto and the southern region of Campania followed in the list. When adjusting these figures for the population size of each region, however, the picture changed, with the region of Veneto being the area where the virus had the highest relative incidence. Coronavirus in Italy Italy has been among the countries most impacted by the coronavirus outbreak. Moreover, the number of deaths due to coronavirus recorded in Italy is significantly high, making it one of the countries with the highest fatality rates worldwide, especially in the first stages of the pandemic. In particular, a very high mortality rate was recorded among patients aged 80 years or older. Impact on the economy The lockdown imposed during the Spring 2020, and other measures taken in the following months to contain the pandemic, forced many businesses to shut their doors and caused industrial production to slow down significantly. As a result, consumption fell, with the sectors most severely hit being hospitality and tourism, air transport, and automotive. Several predictions about the evolution of the global economy were published at the beginning of the pandemic, based on different scenarios about the development of the pandemic. According to the official results, it appeared that the coronavirus outbreak had caused Italy’s GDP to shrink by approximately nine percent in 2020.

  2. Provinces with the most coronavirus (COVID-19) cases in Italy, January 2025

    • statista.com
    Updated Sep 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Provinces with the most coronavirus (COVID-19) cases in Italy, January 2025 [Dataset]. https://www.statista.com/statistics/1109295/provinces-with-most-coronavirus-cases-in-italy/
    Explore at:
    Dataset updated
    Sep 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2025
    Area covered
    Italy
    Description

    As of January 1, 2025, Rome (Lazio) was the Italian province which registered the highest number of coronavirus (COVID-19) cases in the country. Milan (Lombardy) came second in this ranking, while Naples (Campania) and Turin (Piedmont) followed. These four areas are also the four most populated provinces in Italy. The region of Lombardy was the mostly hit by the spread of the virus, recording almost one sixth of all coronavirus cases in the country. The provinces of Milan and Brescia accounted for a large part of this figure. For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  3. COVID-19 outbreak and spread in Italy (2020-04-05)

    • data.europa.eu
    esri shape
    Updated Apr 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2020). COVID-19 outbreak and spread in Italy (2020-04-05) [Dataset]. https://data.europa.eu/data/datasets/56c468e3-6148-47a1-b454-1d61407cf4a6
    Explore at:
    esri shapeAvailable download formats
    Dataset updated
    Apr 4, 2020
    Dataset authored and provided by
    Joint Research Centrehttps://joint-research-centre.ec.europa.eu/index_en
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Area covered
    Italy
    Description


    Activation time (UTC): 2020-04-05 22:46:00
    Event time (UTC): 2020-04-06 08:00:00
    Event type: Epidemic (Viral disease)

    Activation reason:
    Italy is currently facing a serious situation related to the Covid-19. The Head of the Civil Protection Department has been nominated as national emergency Coordinator and the entire National System has been activated to face the Emergency. From the first day of March, the entire Italian territory has been put on lock-down and further initiatives are being implemented to limit the spread of the disease. The Civil Protection needs to map all the temporary health facilities (such as triage facilities, field hospitals and so on) as well the gathering places in order to have a clear understanding of the current situation of the territory for the subsequent monitoring of activities and public spaces during the emergency.

    Reference products: 8
    Delineation products: 7
    Grading products: 0

    Copernicus Emergency Management Service - Mapping is a service funded by European Commission aimed at providing actors in the management of natural and man-made disasters, in particular Civil Protection Authorities and Humanitarian Aid actors, with mapping products based on satellite imagery.

  4. H

    Italy COVID-19 Case Data with Basemap (STC)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Aug 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSF Spatiotemporal Innovation Center (2020). Italy COVID-19 Case Data with Basemap (STC) [Dataset]. http://doi.org/10.7910/DVN/4Z8ZKI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 18, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    NSF Spatiotemporal Innovation Center
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Italy
    Description

    Case data from 02-24-2020 to 08-16-2020, this data repository stores COVID-19 virus case data for Italy, including daily case data, summary data, and base map. Each zip file contains weekly case data from Monday to Sunday.

  5. Coronavirus COVID-19 Italy (updated regularly)

    • kaggle.com
    zip
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datta (2020). Coronavirus COVID-19 Italy (updated regularly) [Dataset]. https://www.kaggle.com/bsridatta/covid-19-italy-updated-regularly
    Explore at:
    zip(57018 bytes)Available download formats
    Dataset updated
    Apr 7, 2020
    Authors
    datta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Italy
    Description

    Updated with cases as of April 6st, 1830 hrs

    I hope this dataset is useful. Consider to throw an upvote! ⬆️, it helps me keep this dataset upto date :)

    Check the completely interactive Uber-KeplerGL map of the cases as shown in the image below

    Context

    Coronavirus Emergency: Nation-wide Quarantine

    10th Match 2020, Italian Prime Minister Giuseppe Conte announced the extension of Italy's emergency coronavirus measures, which include travel restrictions and a ban on public gatherings, from 15 provinces to the entire nation. Italy is by far the most affected country outside China with thousands of cases and hundreds of deaths.

    The Department of Civil Protection of Italy has taken actions to keep citizens well informed on the spread of the virus while the country is in lockdown. The department has released an interactive geographical dashboard to monitor the crisis [Desktop] [Mobile] and is updated every day at 18:30 after the department's press conference.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1396051%2Fefc24e6ff01f03289c957e1dd4790c3a%2Fmy_keplergl_map%20html.png?generation=1584807526886981&alt=media" alt="">

    Inspiration

    This Kaggle dataset is created only to make it easy for the community to draw further and useful insights from the data.

    This inspiration to put this data on Kaggle is not only to draw raw statistics on cases and deaths but to mine more useful data that could be actively used right now. How?

    Leveraging the longitude and latitude information of cases, visualizing them with the distinction between old and new cases along with the temporal information would give better insight into the spread of the virus in a much-magnified perspective. This could be very helpful for the locals to avoid going through those regions

    Content

    This dataset currently provides national, provincial, and regional data of the CoVID-19 cases in Italy. Check out the script to used to convert the original json files and the started notebook in the kernels.

    The time-series data starts from 24th February 2020 till the epidemic ends.

  6. Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3719184
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation to infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation is poorly correlated.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

  7. Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3903917
    Explore at:
    png, bin, csvAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is associated with the publication "G.Coro, (2020), A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate, Ecological Modelling, Volume 431, 109187, https://doi.org/10.1016/j.ecolmodel.2020.109187"

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  8. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  9. Incidence of coronavirus (COVID-19) deaths in Europe 2023, by country

    • statista.com
    Updated Jan 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Incidence of coronavirus (COVID-19) deaths in Europe 2023, by country [Dataset]. https://www.statista.com/statistics/1111779/coronavirus-death-rate-europe-by-country/
    Explore at:
    Dataset updated
    Jan 16, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 13, 2023
    Area covered
    Europe
    Description

    As of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.

    Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.

    Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.

  10. COVID-19 in Turkey

    • kaggle.com
    zip
    Updated Oct 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gokhan Guzelkokar (2020). COVID-19 in Turkey [Dataset]. https://www.kaggle.com/gkhan496/covid19-in-turkey
    Explore at:
    zip(12722 bytes)Available download formats
    Dataset updated
    Oct 29, 2020
    Authors
    Gokhan Guzelkokar
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Area covered
    Türkiye
    Description

    Context

    COVID-19 data in Turkey. Daily Covid-19 data published by our health ministry.

    Content

    time_series_covid_19_confirmed_tr
    time_series_covid_19_recovered_tr
    time_series_covid_19_deaths_tr
    time_series_covid_19_intubated_tr
    time_series_covid_19_intensive_care_tr.csv 
    time_series_covid_19_tested_tr.csv 
    test_numbers : Number of test (daily)
    

    Total data

    covid_19_data_tr

    Github

    Github repo : https://github.com/gkhan496/Covid19-in-Turkey/

    Acknowledgements

    We would like to thank our health ministry and all health workers.

    Country level datasets

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases France - https://www.kaggle.com/lperez/coronavirus-france-dataset Tunisia - https://www.kaggle.com/ghassen1302/coronavirus-tunisia Japan - https://www.kaggle.com/tsubasatwi/close-contact-status-of-corona-in-japan South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2311214%2Feaf61a1cf97850b64aefd52d3de5890b%2FXMhaJ.png?generation=1586182028591623&alt=media" alt="">

    Source : https://fastlifehacks.com/n95-vs-ffp/

    https://covid19.saglik.gov.tr https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html?fbclid=IwAR0k49fzqTxI4HBBZF7n4hLX4Zj0Q2KII_WOEo7agklC20KODB3TOeF8RrU#/bda7594740fd40299423467b48e9ecf6 http://who.int/ --situation reports https://evrimagaci.org/covid19#turkey-statistics

  11. Covid-19 map

    • kaggle.com
    zip
    Updated Apr 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Demetz (2020). Covid-19 map [Dataset]. https://www.kaggle.com/benben377/covid19-map
    Explore at:
    zip(59092378 bytes)Available download formats
    Dataset updated
    Apr 7, 2020
    Authors
    Benjamin Demetz
    Description

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Visual Dashboard (mobile): http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61

    Lancet Article: An interactive web-based dashboard to track COVID-19 in real time

    Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/

    Data Sources: - World Health Organization (WHO): https://www.who.int/ - DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. - BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ - National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml - China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm - Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html - Macau Government: https://www.ssm.gov.mo/portal/ - Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 - US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html - Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html - Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance - European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases - Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 - Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus - 1Point3Arces: https://coronavirus.1point3acres.com/en - WorldoMeters: https://www.worldometers.info/coronavirus/

    Additional Information about the Visual Dashboard: https://systems.jhu.edu/research/public-health/ncov/

  12. COVID-19 vaccination rate in European countries as of January 2023

    • statista.com
    Updated Jan 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 vaccination rate in European countries as of January 2023 [Dataset]. https://www.statista.com/statistics/1196071/covid-19-vaccination-rate-in-europe-by-country/
    Explore at:
    Dataset updated
    Jan 19, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europe
    Description

    As of January 18, 2023, Portugal had the highest COVID-19 vaccination rate in Europe having administered 272.78 doses per 100 people in the country, while Malta had administered 258.49 doses per 100. The UK was the first country in Europe to approve the Pfizer/BioNTech vaccine for widespread use and began inoculations on December 8, 2020, and so far have administered 224.04 doses per 100. At the latest data, Belgium had carried out 253.89 doses of vaccines per 100 population. Russia became the first country in the world to authorize a vaccine - named Sputnik V - for use in the fight against COVID-19 in August 2020. As of August 4, 2022, Russia had administered 127.3 doses per 100 people in the country.

    The seven-day rate of cases across Europe shows an ongoing perspective of which countries are worst affected by the virus relative to their population. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.

  13. qualitative data on healthcareworkers during COVID-19

    • data.europa.eu
    unknown
    Updated Feb 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2021). qualitative data on healthcareworkers during COVID-19 [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-4558665?locale=pl
    Explore at:
    unknown(13238)Available download formats
    Dataset updated
    Feb 23, 2021
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Based on Interview protocolls on the experiences made during the first weeks of the COVID-19 response in hospitals in Austria and Italy, we reduced data using qualitative content analysis and created a concept map applying the coding paradigm by strauss and corbin (1996) in grounded theory methodology. For ethical reasons we cannot upload complete interview transcripts and therefore provide paraphrased and conceptualized datasets. For more information please contact alexander.kreh@uibk.ac.at.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Coronavirus (COVID-19) cases in Italy as of January 2025, by region [Dataset]. https://www.statista.com/statistics/1099375/coronavirus-cases-by-region-in-italy/
Organization logo

Coronavirus (COVID-19) cases in Italy as of January 2025, by region

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 15, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 1, 2025
Area covered
Italy
Description

After entering Italy, the coronavirus (COVID-19) spread fast. The strict lockdown implemented by the government during the Spring 2020 helped to slow down the outbreak. However, the country had to face four new harsh waves of contagion. As of January 1, 2025, the total number of cases reported by the authorities reached over 26.9 million. The north of the country was mostly hit, and the region with the highest number of cases was Lombardy, which registered almost 4.4 million of them. The north-eastern region of Veneto and the southern region of Campania followed in the list. When adjusting these figures for the population size of each region, however, the picture changed, with the region of Veneto being the area where the virus had the highest relative incidence. Coronavirus in Italy Italy has been among the countries most impacted by the coronavirus outbreak. Moreover, the number of deaths due to coronavirus recorded in Italy is significantly high, making it one of the countries with the highest fatality rates worldwide, especially in the first stages of the pandemic. In particular, a very high mortality rate was recorded among patients aged 80 years or older. Impact on the economy The lockdown imposed during the Spring 2020, and other measures taken in the following months to contain the pandemic, forced many businesses to shut their doors and caused industrial production to slow down significantly. As a result, consumption fell, with the sectors most severely hit being hospitality and tourism, air transport, and automotive. Several predictions about the evolution of the global economy were published at the beginning of the pandemic, based on different scenarios about the development of the pandemic. According to the official results, it appeared that the coronavirus outbreak had caused Italy’s GDP to shrink by approximately nine percent in 2020.

Search
Clear search
Close search
Google apps
Main menu