93 datasets found
  1. COVID-19 cases, recoveries, deaths in most impacted countries as of May 2,...

    • statista.com
    Updated Jun 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 cases, recoveries, deaths in most impacted countries as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1105235/coronavirus-2019ncov-cases-recoveries-deaths-most-affected-countries-worldwide/
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.

    Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.

    The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.

  2. T

    United States Coronavirus COVID-19 Recovered

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Coronavirus COVID-19 Recovered [Dataset]. https://tradingeconomics.com/united-states/coronavirus-recovered
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 21, 2020 - Dec 15, 2021
    Area covered
    United States
    Description

    United States recorded 16306656 Coronavirus Recovered since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 797346 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Recovered.

  3. Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2,...

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Coronavirus (COVID-19) cases, recoveries, and deaths worldwide as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1087466/covid19-cases-recoveries-deaths-worldwide/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2, 2023
    Area covered
    Worldwide
    Description

    As of May 2, 2023, there were roughly 687 million global cases of COVID-19. Around 660 million people had recovered from the disease, while there had been almost 6.87 million deaths. The United States, India, and Brazil have been among the countries hardest hit by the pandemic.

    The various types of human coronavirus The SARS-CoV-2 virus is the seventh known coronavirus to infect humans. Its emergence makes it the third in recent years to cause widespread infectious disease following the viruses responsible for SARS and MERS. A continual problem is that viruses naturally mutate as they attempt to survive. Notable new variants of SARS-CoV-2 were first identified in the UK, South Africa, and Brazil. Variants are of particular interest because they are associated with increased transmission.

    Vaccination campaigns Common human coronaviruses typically cause mild symptoms such as a cough or a cold, but the novel coronavirus SARS-CoV-2 has led to more severe respiratory illnesses and deaths worldwide. Several COVID-19 vaccines have now been approved and are being used around the world.

  4. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by...

    • statista.com
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Share of U.S. COVID-19 cases resulting in death from Feb. 12 to Mar. 16, by age [Dataset]. https://www.statista.com/statistics/1105431/covid-case-fatality-rates-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 28, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 12, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    Among COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.

    Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.

    U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.

  6. COVID-19 Recovery Dataset

    • kaggle.com
    zip
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eshaal Malik (2025). COVID-19 Recovery Dataset [Dataset]. https://www.kaggle.com/datasets/eshaalnmalik/covid-19-recovery-dataset
    Explore at:
    zip(1761581 bytes)Available download formats
    Dataset updated
    Oct 4, 2025
    Authors
    Eshaal Malik
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Overview

    The COVID-19 Patient Recovery Dataset is a synthetic collection of anonymized records for around 70,000 COVID-19 patients. It aims to assist with classification tasks in machine learning and epidemiological research. The dataset includes detailed clinical and demographic information, such as symptoms, existing health issues, vaccination status, COVID-19 variants, treatment details, and outcomes related to recovery or mortality. This dataset is great for predicting patient recovery (recovered), mortality (death), disease severity (severity), or the need for intensive care (icu_admission) using algorithms like Logistic Regression, Random Forest, XGBoost, or Neural Networks. It also allows for exploratory data analysis (EDA), statistical modeling, and time-series studies to find patterns in COVID-19 outcomes.
    The data is synthetic and reflects realistic trends found in public health data, based on sources like WHO reports. It ensures privacy and follows ethical guidelines. Dates are provided in Excel serial format, meaning 44447 corresponds to September 8, 2021, and can be converted to standard dates using Python’s datetime or Excel. With 70,000 records and 28 columns, this dataset serves as a valuable resource for data scientists, researchers, and students interested in health-related machine learning or pandemic trends.

    Data Source and Collection

    Source: Synthetic data based on public health patterns from sources like the World Health Organization (WHO). It includes placeholder URLs.
    Collection Period: Simulated from early 2020 to mid-2022, covering the Alpha, Delta, and Omicron waves.
    Number of Records: 70,000.
    File Format: CSV, which works with Pandas, R, Excel, and more.
    Data Quality Notes:

    About 5% of the values are missing in fields like symptoms_2, symptoms_3, treatment_given_2, and date.
    There are rare inconsistencies, such as between recovery/death flags and dates, which may need some preprocessing.
    Unique, anonymized patient IDs.

    Column NameData Type
    patient_idString
    countryString
    region/stateString
    date_reportedInteger
    ageInteger
    genderString
    comorbiditiesString
    symptoms_1String
    symptoms_2String
    symptoms_3String
    severityString
    hospitalizedInteger
    icu_admissionInteger
    ventilator_supportInteger
    vaccination_statusString
    variantString
    treatment_given_1String
    treatment_given_2String
    days_to_recoveryInteger
    recoveredInteger
    deathInteger
    date_of_recoveryInteger
    date_of_deathInteger
    tests_conductedInteger
    test_typeString
    hospital_nameString
    doctor_assignedString
    source_urlString

    Key Column Details

    patient_id: Unique identifier (e.g., P000001).
    country: Reporting country (e.g., India, USA, Brazil, Germany, China, Pakistan, South Africa, UK).
    region/state: Sub-national region (e.g., Sindh, California, São Paulo, Beijing).
    date_reported, date_of_recovery, date_of_death: Excel serial dates (convert using datetime(1899,12,30) + timedelta(days=value)).
    age: Patient age (1–100 years).
    gender: Male or Female.
    comorbidities: Pre-existing conditions (e.g., Diabetes, Hypertension, Cancer, Heart Disease, Asthma, None).
    symptoms_1, symptoms_2, symptoms_3: Reported symptoms (e.g., Cough, Fever, Fatigue, Loss of Smell, Sore Throat, or empty).
    severity: Case severity (Mild, Moderate, Severe, Critical).
    hospitalized, icu_admission, ventilator_support: Binary (1 = Yes, 0 = No).
    vaccination_status: None, Partial, Full, or Booster.
    variant: COVID-19 variant (Omicron, Delta, Alpha).
    treatment_given_1, treatment_given_2: Treatments administered (e.g., Antibiotics, Remdesivir, Oxygen, Steroids, Paracetamol, or empty).
    days_to_recovery: Days from report to recovery (5–30, or empty if not recovered).
    recovered, death: Binary outcomes (1 = Yes, 0 = No; generally mutually exclusive).
    tests_conducted: Number of tests (1–5).
    test_type: PCR or Antigen.
    hospital_name: Fictional hospital (e.g., Aga Khan, Mayo Clinic, NHS Trust).
    doctor_assigned: Fictional doctor name (e.g., Dr. Smith, Dr. Müller).
    source_url: Placeholder.

    Summary Statistics

    Total Patients: 70,000.
    Age: Mean ~50 years, Min 1, Max 100, evenly distributed.
    Gender: ~50% Male, ~50% Female.
    Top Countries: USA (20%), India (18%), Brazil (15%), China (12%), Germany (10%).
    Comorbidities: Diabetes (25%), Hypertension (20%), Cancer (15%), Heart Disease (15%), Asthma (10%), None (15%).
    Severity: Mild (60%), Moderate (25%), Severe (10%), Critical (5%).
    Recovery Rate: ~60% recovered (recovered=1), ~30% deceased (death=1), ~10% unresolved (both 0).
    Vaccination: None (40%), Full (30%), Partial (15%), Booster (15%).
    Variants: Omicron (50%), Delt...

  7. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  8. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  9. d

    COVID-19 and Recovery: Estimates From Payment Card Transactions

    • catalog.data.gov
    Updated Jul 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Economic Analysis (2022). COVID-19 and Recovery: Estimates From Payment Card Transactions [Dataset]. https://catalog.data.gov/dataset/covid-19-and-recovery-estimates-from-payment-card-transactions
    Explore at:
    Dataset updated
    Jul 15, 2022
    Dataset provided by
    Bureau of Economic Analysis
    Description

    BEA has been researching the use of card transaction data as an early barometer of spending in the United States. Since the emergence of COVID-19, dramatic and fast-moving changes to the U.S. economy have increased the public and policymakers' need for more frequent and timely economic data. In response, BEA is presenting these estimates using daily payment card data to measure the effects of the pandemic on spending, updated approximately every two weeks. Note that these payment card transactions are not necessarily representative of total spending in an industry and the data have other limitations, described below. The estimates in these charts and tables are not a substitute for BEA's monthly and quarterly official data, which are grounded in well-tested and proven methodologies. An event study methodology is used to estimate the difference (in percentage points) in spending from the typical level (relative to the day of week, month, and annual trends) prior to the pandemic declared by the World Health Organization on March 11, 2020.

  10. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  11. US Covid-19 Cases, Deaths and Mobility

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Covid-19 Cases, Deaths and Mobility [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-covid-19-cases-deaths-and-mobility-by-state-c
    Explore at:
    zip(89091036 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Covid-19 Cases, Deaths and Mobility by State/County

    Analyzing the Impact of the Pandemic on Low-Income Populations

    By Liz Friedman [source]

    About this dataset

    Welcome to the Opportunity Insights Economic Tracker! Our goal is to provide a comprehensive, real-time look into how COVID-19 and stabilization policies are affecting the US economy. To do this, we have compiled a wide array of data points on spending and employment, gathered from several sources.

    This dataset includes daily/weekly/monthly information at the state/county/city level for eight types of data: Google Mobility; Low-Income Employment and Earnings; UI Claims; Womply Merchants and Revenue; as well as weekly Math Learning from Zearn. Additionally, three files- Accounting for Geoids-State/County/City provide crosswalks between geographic areas that can be merged with other files having shared geographical levels.

    Our goal here is to enable data users around the world to follow economic conditions in the US during this tumultuous period with maximum clarity and precision. We make all our datasets freely available so if you use them we kindly ask you attribute our work by linking or citing both our accompanying paper as well as this Economic Tracker at https://tracktherecoveryorg By doing so you are also agreeing to uphold our privacy & integrity standards which commit us both to individual & business confidentiality without compromising on independent nonpartisan research & policy analysis!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides US COVID-19 case and death data, as well as Google Community Mobility Reports, on the state/county level. Here is how to use this dataset:

    • Understand the file structure: This dataset consists of three main files: 1) US Cases & Deaths by State/County, 2) Google Community Mobility Reports, and 3) Data from third-parties providing small business openings & revenue information and unemployment insurance claim data (Low Inc Earnings & Employment, UI Claims and Womply Merchants & Revenue).
    • Select your Subset: If you are interested in particular types of data (e.g., mobility or employment), select the corresponding files from within each section based on your geographic area of interest – national, state or county level – as indicated in each filename.
    • Review metadata variables: Become familiar with the provided variables so that you can select which ones you need to explore further in your analysis. For example, if analyzing mobility trends at a city level look for columns such as ‘Retailer_and_recreation_percent_change’ or ‘Transit Stations Percent Change’; if focusing on employment decline look for columns such pay or emp figures that align with industries of interest to you such as low-income earners (emp_{inclow},pay_{inclow}).
    • Unify dateformatting across row values : Convert date formats into one common unit so that all entries have consistent formatting if necessary; for exampe some entries may display dates using YYYY/MM/DD notation while others may use MM//DD//YY format depending on their source datasets; make sure to review column labels carefully before converting units where needed..
    • Merge datasets where applicable : Utilize GeoID crosswalks to combine multiple sets with same geographical coverageregionally covering ; example might be combining low income earnings figures with specific county settings by reference geo codes found in related documents like GeoIDs-County .
      6 . Visualise Data : Now that all the different measures have been reviewed can begin generating charts visualize findings . This process may include cleaning up raw figures normalizing across currency formats , mapping geospatial locations others ; once ready create bar graphs line charts maps other visual according aggregate output desired Insightful representations at this stage will help inform concrete policy decisions during outbreak recovery period..

      Remember to cite

    Research Ideas

    • Estimating the Impact of the COVID-19 Pandemic on Small Businesses - By comparing county-level Womply revenue and employment data with pre-COVID data, policymakers can gain an understanding of the economic impact that COVID has had on local small businesses.
    • Analyzing Effects of Mobility Restrictions - The Google Mobility data provides insight into geographic areas where...
  12. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  13. COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  14. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  15. COVID-19 in Turkey

    • kaggle.com
    zip
    Updated Oct 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gokhan Guzelkokar (2020). COVID-19 in Turkey [Dataset]. https://www.kaggle.com/gkhan496/covid19-in-turkey
    Explore at:
    zip(12722 bytes)Available download formats
    Dataset updated
    Oct 29, 2020
    Authors
    Gokhan Guzelkokar
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Area covered
    Türkiye
    Description

    Context

    COVID-19 data in Turkey. Daily Covid-19 data published by our health ministry.

    Content

    time_series_covid_19_confirmed_tr
    time_series_covid_19_recovered_tr
    time_series_covid_19_deaths_tr
    time_series_covid_19_intubated_tr
    time_series_covid_19_intensive_care_tr.csv 
    time_series_covid_19_tested_tr.csv 
    test_numbers : Number of test (daily)
    

    Total data

    covid_19_data_tr

    Github

    Github repo : https://github.com/gkhan496/Covid19-in-Turkey/

    Acknowledgements

    We would like to thank our health ministry and all health workers.

    Country level datasets

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases France - https://www.kaggle.com/lperez/coronavirus-france-dataset Tunisia - https://www.kaggle.com/ghassen1302/coronavirus-tunisia Japan - https://www.kaggle.com/tsubasatwi/close-contact-status-of-corona-in-japan South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2311214%2Feaf61a1cf97850b64aefd52d3de5890b%2FXMhaJ.png?generation=1586182028591623&alt=media" alt="">

    Source : https://fastlifehacks.com/n95-vs-ffp/

    https://covid19.saglik.gov.tr https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html?fbclid=IwAR0k49fzqTxI4HBBZF7n4hLX4Zj0Q2KII_WOEo7agklC20KODB3TOeF8RrU#/bda7594740fd40299423467b48e9ecf6 http://who.int/ --situation reports https://evrimagaci.org/covid19#turkey-statistics

  16. Additional deaths of despair given a 1.6% increase in US unemployment...

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Additional deaths of despair given a 1.6% increase in US unemployment 2020-2029 [Dataset]. https://www.statista.com/statistics/1155389/projected-deaths-of-despair-if-16-percent-unemployment-growth-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Based on the number of deaths of despair in 2018 and projected levels of unemployment from 2020 to 2029, it is estimated that the additional number of deaths in 2023 could range from 2,017 to 21,457 depending on the rate of economic recovery after the COVID-19 recession. This statistic shows the possible additional deaths of despair following the COVID-19 recession for select economic scenarios, given a 1.6 percent increase in unemployment, in the United States from 2020 to 2029.

  17. Estimated time for companies to go back to normal U.S. 2020

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Estimated time for companies to go back to normal U.S. 2020 [Dataset]. https://www.statista.com/statistics/1117305/covid-19-estimated-time-back-to-normal-companies-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 6, 2020
    Area covered
    United States
    Description

    In a May 2020 survey, ** percent of surveyed CFOs said that it would take their companies an estimated one to three months for business to get back to usual if the COVID-19 pandemic were to end today. On the other hand, only ** percent of respondents said it would take less than a month.

  18. T

    COVID-19 Community Profile Report

    • datahub.hhs.gov
    • data.virginia.gov
    • +3more
    csv, xlsx, xml
    Updated Dec 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup (2020). COVID-19 Community Profile Report [Dataset]. https://datahub.hhs.gov/Health/COVID-19-Community-Profile-Report/gqxm-d9w9
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Dec 16, 2020
    Dataset authored and provided by
    White House COVID-19 Team, Joint Coordination Cell, Data Strategy and Execution Workgroup
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    After over two years of public reporting, the Community Profile Report will no longer be produced and distributed after February 2023. The final release will be on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.

    The Community Profile Report (CPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, under the White House COVID-19 Team. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services, the Centers for Disease Control and Prevention, the Assistant Secretary for Preparedness and Response, and the Indian Health Service). The CPR provides easily interpretable information on key indicators for all regions, states, core-based statistical areas (CBSAs), and counties across the United States. It is a snapshot in time that:

  19. Focuses on recent COVID-19 outcomes in the last seven days and changes relative to the week prior
  20. Provides additional contextual information at the county, CBSA, state and regional levels
  21. Supports rapid visual interpretation of results with color thresholds*

    Data in this report may differ from data on state and local websites. This may be due to differences in how data were reported (e.g., date specimen obtained, or date reported for cases) or how the metrics are calculated. Historical data may be updated over time due to delayed reporting. Data presented here use standard metrics across all geographic levels in the United States. It facilitates the understanding of COVID-19 pandemic trends across the United States by using standardized data. The footnotes describe each data source and the methods used for calculating the metrics. For additional data for any particular locality, visit the relevant health department website. Additional data and features are forthcoming.

    *Color thresholds for each category are defined on the color thresholds tab

    Effective April 30, 2021, the Community Profile Report will be distributed on Monday through Friday. There will be no impact to the data represented in these reports due to this change.

    Effective June 22, 2021, the Community Profile Report will only be updated twice a week, on Tuesdays and Fridays.

    Effective August 2, 2021, the Community Profile Report will return to being updated Monday through Friday.

    Effective June 22, 2022, the Community Profile Report will only be updated twice a week, on Wednesdays and Fridays.

  • Analysis of COVID-19 pre-vaccination data assuming a lower mortality rate...

    • plos.figshare.com
    zip
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Min Lu; Hemant Ishwaran (2023). Analysis of COVID-19 pre-vaccination data assuming a lower mortality rate for second and subsequent waves. [Dataset]. http://doi.org/10.1371/journal.pone.0254397.s009
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Min Lu; Hemant Ishwaran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    (A) Basic reproduction number R0(t); note its values are much smaller for Scenarios I and III than II. (B) Even though I and III have similar R0(t) profiles, estimated values for daily new infections and deaths are different. (C) Bimodal lognormal distribution continues to perform poorly even under assumption of lower mortality for post-first wave data. (ZIP)

  • U.S. small business owners' outlook on their recovery from COVID-19 Q4 2020

    • statista.com
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). U.S. small business owners' outlook on their recovery from COVID-19 Q4 2020 [Dataset]. https://www.statista.com/statistics/1224017/us-small-business-owners-outlook-covid-19-business-recovery/
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 6, 2020 - Nov 13, 2020
    Area covered
    United States
    Description

    In a 2020 online survey, ** percent of small business owners in the United States said they expected small businesses like theirs to not recover from the impacts of COVID-19 until beyond 2021. Only ***** percent of respondents believed that businesses like theirs would be able to recover within few more weeks.

  • Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 cases, recoveries, deaths in most impacted countries as of May 2, 2023 [Dataset]. https://www.statista.com/statistics/1105235/coronavirus-2019ncov-cases-recoveries-deaths-most-affected-countries-worldwide/
    Organization logo

    COVID-19 cases, recoveries, deaths in most impacted countries as of May 2, 2023

    Explore at:
    11 scholarly articles cite this dataset (View in Google Scholar)
    Dataset updated
    Jun 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the coronavirus disease (COVID-19) had been confirmed in almost every country and territory around the world. There had been roughly 687 million cases and 6.86 million deaths.

    Vaccine approval in the United States The United States has recorded more coronavirus infections and deaths than any other country in the world. The regulatory agency in the country authorized three COVID-19 vaccines for emergency use. Both the Pfizer-BioNTech and Moderna vaccines were approved in December 2020, while the Johnson & Johnson vaccine was approved in February 2021. As of April 26, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached 675 million.

    The difference between vaccines and antivirals Medications can help with the symptoms of viruses, but it is the role of the immune system to take care of them over time. However, the use of vaccines and antivirals can help the immune system in doing its job. The most tried and tested vaccine method is to inject an inactive or weakened form of a virus, encouraging the immune system to produce protective antibodies. The immune system keeps the virus in its memory, and if the real one appears, the body will recognize it and attack it more efficiently. Antivirals are designed to help target viruses, limiting their ability to reproduce and spread to other cells. They are used by patients who are already infected by a virus and can make the infection less severe.

    Search
    Clear search
    Close search
    Google apps
    Main menu