100+ datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +3more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. Total number of U.S. COVID-19 cases as of March 10, 2023, by state

    • statista.com
    Updated Mar 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Total number of U.S. COVID-19 cases as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1102807/coronavirus-covid19-cases-number-us-americans-by-state/
    Explore at:
    Dataset updated
    Mar 28, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.

    From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.

    The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population

  4. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • unfpa-stories-unfpapdp.hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  5. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  6. Google search increase for leisure activities due to COVID-19 in Hungary...

    • statista.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Google search increase for leisure activities due to COVID-19 in Hungary 2020 [Dataset]. https://www.statista.com/statistics/1108012/leisure-google-search-rise-due-to-coronavirus-hungary/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2020
    Area covered
    Hungary
    Description

    The coronavirus (COVID-19) outbreak caused major changes in the everyday lives of people and also in the way they spent their free time in Hungary. Compared to data from March 2019, there had been a 356 percent rise in the interest for watching series in Hungary as of March 2020, based on Google search queries.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  7. COVID-19 cases by city of residence

    • data.sccgov.org
    application/rdfxml +5
    Updated Dec 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Santa Clara Public Health Department (2024). COVID-19 cases by city of residence [Dataset]. https://data.sccgov.org/COVID-19/COVID-19-cases-by-city-of-residence/59wk-iusg
    Explore at:
    application/rdfxml, csv, tsv, application/rssxml, json, xmlAvailable download formats
    Dataset updated
    Dec 14, 2024
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    County of Santa Clara Public Health Department
    Description

    The dataset summarizes counts and rates of cumulative COVID-19 cases by cities in Santa Clara County. Source: California Reportable Disease Information Exchange

    This dataset is updated every Thursday.

  8. S

    Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2...

    • data.subak.org
    • zenodo.org
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Texas Tech University, Department of Civil, Environmental, and Construction Engineering (2023). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections - Supplementary Materials [Dataset]. https://data.subak.org/dataset/translated-emission-pathways-teps-long-term-simulations-of-covid-19-co2-emissions-and-thermoste
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    Texas Tech University, Department of Civil, Environmental, and Construction Engineering
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press.

    Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community.

  9. The Rise of Pet and Plant Parents - Coronavirus (COVID-19) Consumer Behavior...

    • store.globaldata.com
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GlobalData UK Ltd. (2020). The Rise of Pet and Plant Parents - Coronavirus (COVID-19) Consumer Behavior Impact [Dataset]. https://store.globaldata.com/report/the-rise-of-pet-and-plant-parents-coronavirus-covid-19-consumer-behavior-impact/
    Explore at:
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    GlobalDatahttps://www.globaldata.com/
    Authors
    GlobalData UK Ltd.
    License

    https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/

    Time period covered
    2020 - 2024
    Area covered
    Global
    Description

    This report is part of the GlobalData COVID-19 Impact on Consumer Behavior series, which tracks how the pandemic and many factors have impacted consumer behavior and purchase decisions. Read More

  10. Increase in touchless customer interactions during vs post COVID-19, by...

    • statista.com
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Increase in touchless customer interactions during vs post COVID-19, by country [Dataset]. https://www.statista.com/statistics/1156020/increase-in-touchless-interactions-during-and-after-covid-19-by-country/
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2020 - May 2020
    Area covered
    Worldwide
    Description

    As a result of COVID-19, customers are increasingly looking for digital, non-touch based interactions with organizations, given concerns about physical interactions. The survey shows that even post pandemic customers across the world will still be increasing their use of touchless interfaces, such as facial recognitions, touchless interfaces, apps, etc. For instance, 90 percent of respondents in China expected to increase touchless interactions during the pandemic, and 68 percent of them showed willingness to keep doing the same after the pandemic.

  11. C

    China CN: COVID-19: Confirmed Case: New Increase: Fujian

    • ceicdata.com
    Updated Dec 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    China CN: COVID-19: Confirmed Case: New Increase: Fujian [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient/cn-covid19-confirmed-case-new-increase-fujian
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 28, 2022 - Jan 8, 2023
    Area covered
    China
    Description

    COVID-19: Confirmed Case: New Increase: Fujian data was reported at 736.000 Person in 08 Jan 2023. This records an increase from the previous number of 599.000 Person for 07 Jan 2023. COVID-19: Confirmed Case: New Increase: Fujian data is updated daily, averaging 7.000 Person from Aug 2021 (Median) to 08 Jan 2023, with 507 observations. The data reached an all-time high of 1,234.000 Person in 06 Jan 2023 and a record low of 0.000 Person in 06 Mar 2022. COVID-19: Confirmed Case: New Increase: Fujian data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.

  12. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • flwrdeptvarieties.store
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  13. Effect of COVID-19 on e-commerce.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Effect of COVID-19 on e-commerce. [Dataset]. https://plos.figshare.com/articles/dataset/Effect_of_COVID-19_on_e-commerce_/12836280
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xuwen Gao; Xinjie Shi; Hongdong Guo; Yehong Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Effect of COVID-19 on e-commerce.

  14. C

    China CN: COVID-19: Confirmed Case: New Increase

    • ceicdata.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    China CN: COVID-19: Confirmed Case: New Increase [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient/cn-covid19-confirmed-case-new-increase
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 29, 2020 - May 10, 2020
    Area covered
    China
    Description

    China COVID-19: Confirmed Case: New Increase data was reported at 17.000 Person in 10 May 2020. This records an increase from the previous number of 14.000 Person for 09 May 2020. China COVID-19: Confirmed Case: New Increase data is updated daily, averaging 51.000 Person from Jan 2020 (Median) to 10 May 2020, with 112 observations. The data reached an all-time high of 15,152.000 Person in 12 Feb 2020 and a record low of 1.000 Person in 08 May 2020. China COVID-19: Confirmed Case: New Increase data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.

  15. Excess Deaths Associated with COVID-19

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Sep 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Excess Deaths Associated with COVID-19 [Dataset]. https://catalog.data.gov/dataset/excess-deaths-associated-with-covid-19
    Explore at:
    Dataset updated
    Sep 29, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Estimates of excess deaths can provide information about the burden of mortality potentially related to COVID-19, beyond the number of deaths that are directly attributed to COVID-19. Excess deaths are typically defined as the difference between observed numbers of deaths and expected numbers. This visualization provides weekly data on excess deaths by jurisdiction of occurrence. Counts of deaths in more recent weeks are compared with historical trends to determine whether the number of deaths is significantly higher than expected. Estimates of excess deaths can be calculated in a variety of ways, and will vary depending on the methodology and assumptions about how many deaths are expected to occur. Estimates of excess deaths presented in this webpage were calculated using Farrington surveillance algorithms (1). For each jurisdiction, a model is used to generate a set of expected counts, and the upper bound of the 95% Confidence Intervals (95% CI) of these expected counts is used as a threshold to estimate excess deaths. Observed counts are compared to these upper bound estimates to determine whether a significant increase in deaths has occurred. Provisional counts are weighted to account for potential underreporting in the most recent weeks. However, data for the most recent week(s) are still likely to be incomplete. Only about 60% of deaths are reported within 10 days of the date of death, and there is considerable variation by jurisdiction. More detail about the methods, weighting, data, and limitations can be found in the Technical Notes.

  16. f

    Heterogeneous effects of COVID-19 on e-commerce: By age of the household...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xuwen Gao; Xinjie Shi; Hongdong Guo; Yehong Liu (2023). Heterogeneous effects of COVID-19 on e-commerce: By age of the household head. [Dataset]. http://doi.org/10.1371/journal.pone.0237900.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Xuwen Gao; Xinjie Shi; Hongdong Guo; Yehong Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Heterogeneous effects of COVID-19 on e-commerce: By age of the household head.

  17. Coronavirus (COVID-19) new cases in Italy as of January 2025, by date of...

    • statista.com
    Updated Jan 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Coronavirus (COVID-19) new cases in Italy as of January 2025, by date of report [Dataset]. https://www.statista.com/statistics/1101690/coronavirus-new-cases-development-italy/
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 22, 2020 - Jan 8, 2025
    Area covered
    Italy
    Description

    The first two cases of the new coronavirus (COVID-19) in Italy were recorded between the end of January and the beginning of February 2020. Since then, the number of cases in Italy increased steadily, reaching over 26.9 million as of January 8, 2025. The region mostly hit by the virus in the country was Lombardy, counting almost 4.4 million cases. On January 11, 2022, 220,532 new cases were registered, which represented the biggest daily increase in cases in Italy since the start of the pandemic. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.

  18. d

    Data from: Ambiguous COVID-19 Messaging Increases Unsafe Socializing...

    • dataone.org
    • dataverse.harvard.edu
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hopkins, Vince; Pickup, Mark; Matthews, Scott (2024). Ambiguous COVID-19 Messaging Increases Unsafe Socializing Intentions [Dataset]. http://doi.org/10.7910/DVN/EGTNPQ
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Hopkins, Vince; Pickup, Mark; Matthews, Scott
    Description

    Dataset and code for the paper, "Ambiguous COVID-19 Messaging Increases Unsafe Socializing Intentions" published in the Journal of Behavioural Public Administration.

  19. Perception towards COVID-19 about the mode of transmission, incubation...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Most. Zannatul Ferdous; Md. Saiful Islam; Md. Tajuddin Sikder; Abu Syed Md. Mosaddek; J. A. Zegarra-Valdivia; David Gozal (2023). Perception towards COVID-19 about the mode of transmission, incubation period, symptoms, risk factors, treatments, prevention initiatives, and challenges. [Dataset]. http://doi.org/10.1371/journal.pone.0239254.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Most. Zannatul Ferdous; Md. Saiful Islam; Md. Tajuddin Sikder; Abu Syed Md. Mosaddek; J. A. Zegarra-Valdivia; David Gozal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Perception towards COVID-19 about the mode of transmission, incubation period, symptoms, risk factors, treatments, prevention initiatives, and challenges.

  20. C

    China CN: COVID-19: Asymptomatic Infection: Local: New Increase: from...

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    China CN: COVID-19: Asymptomatic Infection: Local: New Increase: from Initiative Seek Medical Advice: Guangzhou [Dataset]. https://www.ceicdata.com/en/china/covid19-key-city-local-daily-new-increase/cn-covid19-asymptomatic-infection-local-new-increase-from-initiative-seek-medical-advice-guangzhou
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 25, 2022 - Dec 6, 2022
    Area covered
    China
    Description

    China COVID-19: Asymptomatic Infection: Local: New Increase: from Initiative Seek Medical Advice: Guangzhou data was reported at 37.000 Person in 06 Dec 2022. This records a decrease from the previous number of 73.000 Person for 05 Dec 2022. China COVID-19: Asymptomatic Infection: Local: New Increase: from Initiative Seek Medical Advice: Guangzhou data is updated daily, averaging 3.000 Person from Nov 2022 (Median) to 06 Dec 2022, with 36 observations. The data reached an all-time high of 73.000 Person in 05 Dec 2022 and a record low of 0.000 Person in 15 Nov 2022. China COVID-19: Asymptomatic Infection: Local: New Increase: from Initiative Seek Medical Advice: Guangzhou data remains active status in CEIC and is reported by Guangzhou Municipal Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: Key City Local Daily New Increase.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu