100+ datasets found
  1. Covid-19 Global Dataset

    • kaggle.com
    zip
    Updated Apr 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Yadav (2025). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/datasets/khushikyad001/covid-19-global-dataset
    Explore at:
    zip(482555 bytes)Available download formats
    Dataset updated
    Apr 12, 2025
    Authors
    Khushi Yadav
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains 3,000 rows and 26 columns of synthetically generated COVID-19 records. It replicates realistic global pandemic data, simulating values for cases, deaths, tests, vaccinations, demographics, and policy measures. The data mimics actual records from sources like Our World in Data, designed specifically for data science experimentation, visualization, and machine learning projects.

    It is ideal for:

    Practicing exploratory data analysis (EDA)

    Creating dashboards

    Building predictive models

    Teaching or student projects

    Kaggle Notebooks without API dependencies

  2. COVID-19 Data Visualization Using Python

    • kaggle.com
    zip
    Updated Apr 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adithya Wijesinghe (2023). COVID-19 Data Visualization Using Python [Dataset]. https://www.kaggle.com/datasets/adithyawijesinghe/covid-19-data
    Explore at:
    zip(1291081 bytes)Available download formats
    Dataset updated
    Apr 21, 2023
    Authors
    Adithya Wijesinghe
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Data visualization using Python (Pandas, Plotly).

    Data was used to visualization of the infection rate and the death rate from 01/20 to 04/22.

    The data was made available on Github: https://raw.githubusercontent.com/datasets/covid-19/master/data/countries-aggregated.csv

  3. HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions

    • catalog.data.gov
    • healthdata.gov
    • +1more
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2023). HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions [Dataset]. https://catalog.data.gov/dataset/hcup-visualization-of-inpatient-trends-in-covid-19-and-other-conditions
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.

  4. d

    Python Code for Visualizing COVID-19 data

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Chartier; Geoffrey Rockwell (2023). Python Code for Visualizing COVID-19 data [Dataset]. http://doi.org/10.5683/SP3/PYEQL0
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Ryan Chartier; Geoffrey Rockwell
    Description

    The purpose of this code is to produce a line graph visualization of COVID-19 data. This Jupyter notebook was built and run on Google Colab. This code will serve mostly as a guide and will need to be adapted where necessary to be run locally. The separate COVID-19 datasets uploaded to this Dataverse can be used with this code. This upload is made up of the IPYNB and PDF files of the code.

  5. Analytics and Data Visualization for COVID-19 Intelligence

    • coronavirus-resources.esri.com
    Updated Apr 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Analytics and Data Visualization for COVID-19 Intelligence [Dataset]. https://coronavirus-resources.esri.com/documents/810bb6d1ab564283b82c8047fb0e9b5a
    Explore at:
    Dataset updated
    Apr 10, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Analytics and Data Visualization for COVID-19 Intelligence.An ArcGIS Blog arcticle that explains how to leverage ready-to-use reports and tutorials to gauge COVID-19 pandemic's impact worldwide._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  6. WHO COVID-19 global data as of July 20th

    • kaggle.com
    zip
    Updated Jul 24, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paddy Nsubuga (2021). WHO COVID-19 global data as of July 20th [Dataset]. https://www.kaggle.com/datasets/paddynsubuga/who-covid19-global-data-as-of-july-20th
    Explore at:
    zip(8173 bytes)Available download formats
    Dataset updated
    Jul 24, 2021
    Authors
    Paddy Nsubuga
    Description

    Dataset

    This dataset was created by Paddy Nsubuga

    Contents

  7. COVID-19 DATA [COUNTY,STATE,DEATHS,CONFIRMED CASE]

    • kaggle.com
    zip
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pavithra T (2020). COVID-19 DATA [COUNTY,STATE,DEATHS,CONFIRMED CASE] [Dataset]. https://www.kaggle.com/datasets/pavithrat27/covid19-data-countystatedeathsconfirmed-case/discussion
    Explore at:
    zip(851610 bytes)Available download formats
    Dataset updated
    May 22, 2020
    Authors
    Pavithra T
    Description

    Context

    The DATESET is of US-COUNTRIES for COVID19.

    Description

    1. Covid_Data based on each countystates.csv= Contains Deaths,confirmed_cases,state,county 2.Covid_Data= Contains state,county,country,zipcode,city,Covidimpacted,latitude,longitude,timezone

    Prediction can be done for column CovidImpacted by choosing Deaths,confirmed cases by some algo and show the accuracy,performance etc

    Content

    • The DATASET has city,state,county,Deaths,Confirmed_cases,latitude,longitude,zipcode.
    • DATASET can be used to classification based on cases/Deaths
    • DATA Analysis,DATA VISUALISATION can be done for DATASET.

    Inspiration

    As because we are in COVID19 hope this DATA can be used for beginners,intermediate to work in it Hope it Helps!

  8. D

    Data from: International COVID-19 mortality forecast visualization:...

    • datasetcatalog.nlm.nih.gov
    • datadryad.org
    Updated Dec 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bui, Alex; Akre, Samir; Liu, Patrick; Friedman, Joseph (2021). International COVID-19 mortality forecast visualization: covidcompare.io [Dataset]. http://doi.org/10.5068/D1V68X
    Explore at:
    Dataset updated
    Dec 24, 2021
    Authors
    Bui, Alex; Akre, Samir; Liu, Patrick; Friedman, Joseph
    Description

    COVID-19 mortality forecasting models provide critical information about the trajectory of the pandemic, which is used by policymakers and public health officials to guide decision-making. However, thousands of published COVID-19 mortality forecasts now exist, many with their own unique methods, assumptions, format, and visualization. As a result, it is difficult to compare models and understand under which circumstances a model performs best. Here, we describe the construction and usability of covidcompare.io, a web tool built to compare numerous forecasts and offer insight into how each has performed over the course of the pandemic. From its launch in December 2020 to June 2021, we have seen 4,600 unique visitors from 85 countries. A study conducted with public health professionals showed high usability overall as formally assessed using a Post-Study System Usability Questionnaire (PSSUQ). We find that covidcompare.io is an impactful tool for the comparison of international COVID-19 mortality forecasting models.

  9. HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions -...

    • healthdata.gov
    csv, xlsx, xml
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions - k2dr-3fsc - Archive Repository [Dataset]. https://healthdata.gov/dataset/HCUP-Visualization-of-Inpatient-Trends-in-COVID-19/hy6f-vipk
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jul 26, 2023
    Description

    This dataset tracks the updates made on the dataset "HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions" as a repository for previous versions of the data and metadata.

  10. r

    Indonesia's Covid-19 cases have spiked - Chart

    • restofworld.org
    Updated Jul 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rest of World (2021). Indonesia's Covid-19 cases have spiked - Chart [Dataset]. https://restofworld.org/charts/2021/j1Ngb-indonesias-covid19-cases-spiked
    Explore at:
    Dataset updated
    Jul 26, 2021
    Dataset authored and provided by
    Rest of World
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    A data visualization representing Indonesia's Covid-19 cases have spiked

  11. Mapping the COVID-19 global response: from grassroots to governments

    • data.niaid.nih.gov
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akligoh, Harry; Havemann, Jo; Restrepo, Martin; Obanda, Johanssen (2024). Mapping the COVID-19 global response: from grassroots to governments [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3732376
    Explore at:
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Access 2 Perspectives
    Hyper Island, Appiario Lab, Brazil
    Pint of Science & AfricArXiv, Kenya
    Open Bioeconomy Lab, Hive Biolab (Kumasi Hive), Ghana
    Authors
    Akligoh, Harry; Havemann, Jo; Restrepo, Martin; Obanda, Johanssen
    Description

    Visual map at kumu.io/access2perspectives/covid19-resources

    Data set doi: 10.5281/zenodo.3732377 // available in different formats (pdf, xls, ods, csv,)

    Correspondence: (JH) info@access2perspectives.com

    Objectives

    Provide citizens with crucial and reliable information

    Encourage and facilitate South South collaboration

    Bridging language barriers

    Provide local governments and cities with lessons learned about COVID-19 crisis response

    Facilitate global cooperation and immediate response on all societal levels

    Enable LMICs to collaborate and innovate across distances and leverage locally available and context-relevant resources

    Methodology

    The data feeding the map at kumu.io was compiled from online resources and information shared in various community communication channels.

    Kumu.io is a visualization platform for mapping complex systems and to provide a deeper understanding of their intrinsic relationships. It provides blended systems thinking, stakeholder mapping, and social network analysis.

    Explore the map // https://kumu.io/access2perspectives/covid19-resources#global

    Click on individual nodes and view the information by country

    info hotlines

    governmental informational websites, Twitter feeds & Facebook pages

    fact checking online resources

    language indicator

    DIY resources

    clinical staff capacity building

    etc.

    With the navigation buttons to the right, you can zoom in and out, select and focus on specific elements.

    If you have comments, questions or suggestions for improvements on this map email us at info@access2perspectives.com

    Contribute

    Please add data to the spreadsheet at https://tinyurl.com/COVID19-global-response

    you can add additional information on country, city or neighbourhood level (see e.g. the Cape Town entry)

    Related documents

    Google Doc: tinyurl.com/COVID19-Africa-Response

  12. f

    Independent Data Aggregation, Quality Control and Visualization of...

    • datasetcatalog.nlm.nih.gov
    Updated Oct 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago (2020). Independent Data Aggregation, Quality Control and Visualization of University of Arizona COVID-19 Re-Entry Testing Data [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000484783
    Explore at:
    Dataset updated
    Oct 21, 2020
    Authors
    Ly, Chun; Knott, Cheryl; McCleary, Jill; Castiello-Gutiérrez, Santiago
    Description

    AbstractThe dataset provided here contains the efforts of independent data aggregation, quality control, and visualization of the University of Arizona (UofA) COVID-19 testing programs for the 2019 novel Coronavirus pandemic. The dataset is provided in the form of machine-readable tables in comma-separated value (.csv) and Microsoft Excel (.xlsx) formats.Additional InformationAs part of the UofA response to the 2019-20 Coronavirus pandemic, testing was conducted on students, staff, and faculty prior to start of the academic year and throughout the school year. These testings were done at the UofA Campus Health Center and through their instance program called "Test All Test Smart" (TATS). These tests identify active cases of SARS-nCoV-2 infections using the reverse transcription polymerase chain reaction (RT-PCR) test and the Antigen test. Because the Antigen test provided more rapid diagnosis, it was greatly used three weeks prior to the start of the Fall semester and throughout the academic year.As these tests were occurring, results were provided on the COVID-19 websites. First, beginning in early March, the Campus Health Alerts website reported the total number of positive cases. Later, numbers were provided for the total number of tests (March 12 and thereafter). According to the website, these numbers were updated daily for positive cases and weekly for total tests. These numbers were reported until early September where they were then included in the reporting for the TATS program.For the TATS program, numbers were provided through the UofA COVID-19 Update website. Initially on August 21, the numbers provided were the total number (July 31 and thereafter) of tests and positive cases. Later (August 25), additional information was provided where both PCR and Antigen testings were available. Here, the daily numbers were also included. On September 3, this website then provided both the Campus Health and TATS data. Here, PCR and Antigen were combined and referred to as "Total", and daily and cumulative numbers were provided.At this time, no official data dashboard was available until September 16, and aside from the information provided on these websites, the full dataset was not made publicly available. As such, the authors of this dataset independently aggregated data from multiple sources. These data were made publicly available through a Google Sheet with graphical illustration provided through the spreadsheet and on social media. The goal of providing the data and illustrations publicly was to provide factual information and to understand the infection rate of SARS-nCoV-2 in the UofA community.Because of differences in reported data between Campus Health and the TATS program, the dataset provides Campus Health numbers on September 3 and thereafter. TATS numbers are provided beginning on August 14, 2020.Description of Dataset ContentThe following terms are used in describing the dataset.1. "Report Date" is the date and time in which the website was updated to reflect the new numbers2. "Test Date" is to the date of testing/sample collection3. "Total" is the combination of Campus Health and TATS numbers4. "Daily" is to the new data associated with the Test Date5. "To Date (07/31--)" provides the cumulative numbers from 07/31 and thereafter6. "Sources" provides the source of information. The number prior to the colon refers to the number of sources. Here, "UACU" refers to the UA COVID-19 Update page, and "UARB" refers to the UA Weekly Re-Entry Briefing. "SS" and "WBM" refers to screenshot (manually acquired) and "Wayback Machine" (see Reference section for links) with initials provided to indicate which author recorded the values. These screenshots are available in the records.zip file.The dataset is distinguished where available by the testing program and the methods of testing. Where data are not available, calculations are made to fill in missing data (e.g., extrapolating backwards on the total number of tests based on daily numbers that are deemed reliable). Where errors are found (by comparing to previous numbers), those are reported on the above Google Sheet with specifics noted.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu

  13. d

    Visualizing the lagged connection between COVID-19 cases and deaths in the...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Testa, Christian C.; Krieger, Nancy; Chen, Jarvis T.; Hanage, William P. (2023). Visualizing the lagged connection between COVID-19 cases and deaths in the United States: An animation using per capita state-level data (January 22, 2020 – July 8, 2020) [Dataset]. http://doi.org/10.7910/DVN/0C3BTS
    Explore at:
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Testa, Christian C.; Krieger, Nancy; Chen, Jarvis T.; Hanage, William P.
    Description

    Data visualizations of the COVID-19 pandemic in the United States often have presented case and death rates by state in separate visualizations making it difficult to discern the temporal relationship between these two epidemiological metrics. By combining the COVID-19 case and death rates into a single visualization we have provided an intuitive format for depicting the relationship between cases and deaths. Moreover, by using animation we have made the temporal lag between cases and subsequent deaths more obvious and apparent. This work helps to inform expectations for the trajectory of death rates in the United States given the recent surge in case rates.

  14. COVID-19 INDIA

    • kaggle.com
    zip
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data_explorer (2020). COVID-19 INDIA [Dataset]. https://www.kaggle.com/dataexplorer26/covid-apr16
    Explore at:
    zip(1039 bytes)Available download formats
    Dataset updated
    Apr 16, 2020
    Authors
    data_explorer
    Area covered
    India
    Description

    Context

    COVID-19, India This tutorial help in understanding basics of data visualization and mapping using Python.

    Content

    Data sets contain State wise confirmed cases, death toll, and cured cases till date.

    Acknowledgements

    I owe my thanks to the data sets provider.

    Inspiration

    Data visualization helps in creating trends, patterns, interactive graphs and maps. This will help policy and decision makers to understand,discuss and visualize the data.

  15. DataSheet1_Development of the United States Environmental Protection...

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Baxter; Jeremy Baynes; Anne Weaver; Anne Neale; Timothy Wade; Megan Mehaffey; Danelle Lobdell; Kelly Widener; Wayne Cascio (2023). DataSheet1_Development of the United States Environmental Protection Agency’s Facilities Status Dashboard for the COVID-19 Pandemic: Approach and Challenges.PDF [Dataset]. http://doi.org/10.3389/ijph.2022.1604761.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Lisa Baxter; Jeremy Baynes; Anne Weaver; Anne Neale; Timothy Wade; Megan Mehaffey; Danelle Lobdell; Kelly Widener; Wayne Cascio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Objectives: Develop a tool for applying various COVID-19 re-opening guidelines to the more than 120 U.S. Environmental Protection Agency (EPA) facilities.Methods: A geographic information system boundary was created for each EPA facility encompassing the county where the EPA facility is located and the counties where employees commuted from. This commuting area is used for display in the Dashboard and to summarize population and COVID-19 health data for analysis.Results: Scientists in EPA’s Office of Research and Development developed the EPA Facility Status Dashboard, an easy-to-use web application that displays data and statistical analyses on COVID-19 cases, testing, hospitalizations, and vaccination rates.Conclusion: The Dashboard was designed to provide readily accessible information for EPA management and staff to view and understand the COVID-19 risk surrounding each facility. It has been modified several times based on user feedback, availability of new data sources, and updated guidance. The views expressed in this article are those of the authors and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.

  16. COVID-19 Weekly Cases and Deaths by Age, Race/Ethnicity, and Sex - ARCHIVED

    • healthdata.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2022). COVID-19 Weekly Cases and Deaths by Age, Race/Ethnicity, and Sex - ARCHIVED [Dataset]. https://healthdata.gov/CDC/COVID-19-Weekly-Cases-and-Deaths-by-Age-Race-Ethni/gpce-gn87
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Dec 24, 2022
    Dataset provided by
    data.cdc.gov
    Description

    Note: Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This table summarizes COVID-19 case and death data submitted to CDC as case reports for the line-level dataset. Case and death counts are stratified according to sex, age, and race and ethnicity at regional and national levels. Data for US territories are included in case and death counts, but not population counts. Weekly cumulative counts with five or fewer cases or deaths are not reported to protect confidentiality of patients. Records with unknown or missing sex, age, or race and ethnicity and of multiple, non-Hispanic race and ethnicity are included in case and death totals. COVID-19 case and death data are provisional and are subject to change. Visualization of COVID-19 case and death rate trends by demographic variables may be viewed on COVID Data Tracker (https://covid.cdc.gov/covid-data-tracker/#demographicsovertime).

  17. Additional file 1 of Expediting knowledge acquisition by a web framework for...

    • springernature.figshare.com
    xlsx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacqueline Peng; David Xu; Ryan Lee; Siwei Xu; Yunyun Zhou; Kai Wang (2023). Additional file 1 of Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology [Dataset]. http://doi.org/10.6084/m9.figshare.19980423.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jacqueline Peng; David Xu; Ryan Lee; Siwei Xu; Yunyun Zhou; Kai Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1: Table S1. A list of normalized COVID-19/SARS-CoV-2-related subjects. Table S2. COVID-19 KG data source comparison.

  18. A Personalized Activity-based Spatiotemporal Risk Mapping Approach to...

    • figshare.com
    tiff
    Updated Mar 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Li; Xuantong Wang; Hexuan Zheng; Tong Zhang (2021). A Personalized Activity-based Spatiotemporal Risk Mapping Approach to COVID-19 Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.13517105.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Mar 18, 2021
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Jing Li; Xuantong Wang; Hexuan Zheng; Tong Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets used for this manuscript were derived from multiple sources: Denver Public Health, Esri, Google, and SafeGraph. Any reuse or redistribution of the datasets are subjected to the restrictions of the data providers: Denver Public Health, Esri, Google, and SafeGraph and should consult relevant parties for permissions.1. COVID-19 case dataset were retrieved from Denver Public Health (Link: https://storymaps.arcgis.com/stories/50dbb5e7dfb6495292b71b7d8df56d0a )2. Point of Interests (POIs) data were retrieved from Esri and SafeGraph (Link: https://coronavirus-disasterresponse.hub.arcgis.com/datasets/6c8c635b1ea94001a52bf28179d1e32b/data?selectedAttribute=naics_code) and verified with Google Places Service (Link: https://developers.google.com/maps/documentation/javascript/reference/places-service)3. The activity risk information is accessible from Texas Medical Association (TMA) (Link: https://www.texmed.org/TexasMedicineDetail.aspx?id=54216 )The datasets for risk assessment and mapping are included in a geodatabase. Per SafeGraph data sharing guidelines, raw data cannot be shared publicly. To view the content of the geodatabase, users should have installed ArcGIS Pro 2.7. The geodatabase includes the following:1. POI. Major attributes are locations, name, and daily popularity.2. Denver neighborhood with weekly COVID-19 cases and computed regional risk levels.3. Simulated four travel logs with anchor points provided. Each is a separate point layer.

  19. g

    Austria's Covid-19 relief measures - Tableau Visualization

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austria's Covid-19 relief measures - Tableau Visualization [Dataset]. https://gimi9.com/dataset/eu_5c00e14a-9fa0-43b0-8b9a-6e91551ae2e4
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    The Court provides data on public aid between March 2020 and the end of June 2021. The respective sums were added up and provided with interactive visualization in the form of a bar chart. The visualization shows the area, the name, the sum of the aid measures and the external recipient. The X-axis is logarithmically scaled.

  20. Data from: Epidemics and pandemics in maps – the case of COVID-19

    • tandf.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franz-Benjamin Mocnik; Paulo Raposo; Wim Feringa; Menno-Jan Kraak; Barend Köbben (2023). Epidemics and pandemics in maps – the case of COVID-19 [Dataset]. http://doi.org/10.6084/m9.figshare.12854315.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Franz-Benjamin Mocnik; Paulo Raposo; Wim Feringa; Menno-Jan Kraak; Barend Köbben
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Epidemics and pandemics are geographical in nature and constitute spatial, temporal, and thematic phenomena across large ranges of scales: local infections with a global spread; short-term decisions by governments and institutions with long-term effects; and diverse effects of the disease on many aspects of our lives. Pandemics pose particular challenges to their visual representation by cartographic means. This article briefly summarizes some of these challenges and outlines ways to approach these. We discuss how to use the information usually available for telling the story of an epidemic, illustrated by the example of the 2019–2020 COVID-19 pandemic. The maps attached to this article demonstrate the discussed cartographic means.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Khushi Yadav (2025). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/datasets/khushikyad001/covid-19-global-dataset
Organization logo

Covid-19 Global Dataset

A realistic, artificially generated COVID-19 dataset for EDA,& visualization .

Explore at:
zip(482555 bytes)Available download formats
Dataset updated
Apr 12, 2025
Authors
Khushi Yadav
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

This dataset contains 3,000 rows and 26 columns of synthetically generated COVID-19 records. It replicates realistic global pandemic data, simulating values for cases, deaths, tests, vaccinations, demographics, and policy measures. The data mimics actual records from sources like Our World in Data, designed specifically for data science experimentation, visualization, and machine learning projects.

It is ideal for:

Practicing exploratory data analysis (EDA)

Creating dashboards

Building predictive models

Teaching or student projects

Kaggle Notebooks without API dependencies

Search
Clear search
Close search
Google apps
Main menu