The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents. On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset. Dataset is cumulative and covers cases going back to 3/2/2020 when testing began. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000 Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website. Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongo
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
This dataset has been retired as of February 17, 2023. This dataset will be kept for historical purposes, but will no longer be updated. Similar data are available on the state’s open data portal: https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.
A. DATASET DESCRIPTION This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2019 American Community Survey (ACS) 5-year population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to March 18th, 2020 when the first person in Marin County tested positive for COVID-19. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
Geographic areas summarized are: 1. City, Town, or Community Area 2. Census Tracts 3. Census ZIP Code Tabulation Areas (ZCTAs)
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by Marin County HHS. Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2019 ACS estimates for population provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
C. UPDATE PROCESS Geographic analysis is scripted by Marin HHS staff and synced to this dataset each day.
D. HOW TO USE THIS DATASET This dataset can be used to track the spread of COVID-19 throughout Marin County in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. For example if a zip code did not have 10 cumulative cases until June 1, 2020 that location will not be included in the dataset until June 1. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. 3. Cases are dropped altogether for areas where acs_population < 1000. Some adjacent geographic areas may be combined until the ACS population exceeds 1,000 to still provide information for these regions.
Note: 14-day case rate or 30-day case rate where the counts are lower than 20 may be unstable. We advise caution in interpreting rates at these small numbers.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes.
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents. Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date). COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date. Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are spec
As of June 13, 2023, there have been almost 768 million cases of coronavirus (COVID-19) worldwide. The disease has impacted almost every country and territory in the world, with the United States confirming around 16 percent of all global cases.
COVID-19: An unprecedented crisis Health systems around the world were initially overwhelmed by the number of coronavirus cases, and even the richest and most prepared countries struggled. In the most vulnerable countries, millions of people lacked access to critical life-saving supplies, such as test kits, face masks, and respirators. However, several vaccines have been approved for use, and more than 13 billion vaccine doses had already been administered worldwide as of March 2023.
The coronavirus in the United Kingdom Over 202 thousand people have died from COVID-19 in the UK, which is the highest number in Europe. The tireless work of the National Health Service (NHS) has been applauded, but the country’s response to the crisis has drawn criticism. The UK was slow to start widespread testing, and the launch of a COVID-19 contact tracing app was delayed by months. However, the UK’s rapid vaccine rollout has been a success story, and around 53.7 million people had received at least one vaccine dose as of July 13, 2022.
New COVID-19 cases in Russia stood at over 19.9 thousand during the week ending October 22, 2023, up nearly 3.1 thousand from the previous week. The total number of confirmed cases of the disease in the country exceeded 23 million, with the capital Moscow accounting for the largest number of infected individuals. COVID-19 spread in Russia The mass spread of the coronavirus (COVID-19) in Russia is considered to have started in March 2020, given that only two cases were recorded at the end of January and none in February. By mid-April, the disease affected all federal subjects, or regions of the country. To contain the COVID-19 outbreak, a lockdown was introduced in the country until mid-May 2020, and residents aged above 65 years were obliged to stay home for several months longer as a preventive measure. Another non-working period was announced at the end of October and the beginning of November 2021. What do Russians think about COVID-19? In February 2020, only 18 percent of the Russian population believed there was a high probability of the COVID-19 outbreak in the country. As more disease cases were reported, the society took it more seriously. In April 2020, over 90 percent of Russians supported measures taken by the national government to prevent the wider spread of the disease.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
As of May 2, 2023, Canadians aged 20 to 29 years accounted for 17 percent of COVID-19 cases in Canada, the largest share of all age groups.
Which groups of people are at higher risk? The number of new coronavirus cases in Canada had dropped dramatically in the beginning of 2021, suggesting the country had regained control of the second wave of infections, before spiking again around April and then dropping again in the summer months. A new surge began in December 2021, with the number of new daily cases skyrocketing, reaching never-before-seen levels. While there are much more cases among younger people, the number of COVID-19 deaths are particularly high for older people, especially those with pre-existing medical conditions. During these challenging times, it is important to protect older people living alone and those in care facilities. Groups should not be discriminated against because of age, and all communities need to be supported.
https://www.ycharts.com/termshttps://www.ycharts.com/terms
View daily updates and historical trends for US Coronavirus Cases Per Day. from United States. Source: Johns Hopkins Center for Systems Science and Engine…
As of August 28, 2023, South Korea has confirmed a total of 34,436,586 positive cases of coronavirus (COVID-19), including 35,812 deaths. The first case coronavirus in South Korea was discovered in January 2020. Currently, 25.57 cases per 100,000 people are being confirmed, down from 35.74 cases last month.
Case development trend
In the middle of February 2020, novel coronavirus (COVID-19) began to increase exponentially from patient 31, who was known as a super propagator. With a quick response by the government, the daily new cases once dropped to a single-digit. In May 2020, around three hundreds of new infections were related to cluster infections that occurred in some clubs at Itaewon, an entertainment district in Seoul. Seoul and the metropolitan areas were hit hard by this Itaewon infection. Following the second wave of infections in August, the government announced it was facing the third wave in November with 200 to 300 confirmed cases every day. A fourth wave started in July 2021 from the spread of the delta variant and low vaccination rates. While vaccination rates have risen significantly since then, the highly infectious omicron variant led to a record-breaking rise in cases. This began easing up in March of 2022, though numbers began to rise again around August of 2022. As of October 2022, case numbers are decreasing again.
Economic impact on Korean economy
The Korean economy is interdependent on many countries over the world, so the impact of coronavirus on Korean economy is significant. According to recent OECD forecasts, South Korea's GDP is projected to show positive growth in 2022 and 2023. The first sector the coronavirus impacted was tourism, caused by decreasing numbers of inbound tourists and domestic sales. In the first quarter of 2020, tourism revenue was expected to decrease by 2.9 trillion won. In addition, Korean companies predicted that the damage caused by the losses in sales and exports would be significant. In particular, the South Korean automotive industry was considered to be the most affected industry, as automobile production and parts supply stopped at factories in China.For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
India reported almost 45 million cases of the coronavirus (COVID-19) as of October 20, 2023, with more than 44 million recoveries and about 532 thousand fatalities. The number of cases in the country had a decreasing trend in the past months.
Burden on the healthcare system
With the world's second largest population in addition to an even worse second wave of the coronavirus pandemic seems to be crushing an already inadequate healthcare system. Despite vast numbers being vaccinated, a new variant seemed to be affecting younger age groups this time around. The lack of ICU beds, black market sales of oxygen cylinders and drugs needed to treat COVID-19, as well as overworked crematoriums resorting to mass burials added to the woes of the country. Foreign aid was promised from various countries including the United States, France, Germany and the United Kingdom. Additionally, funding from the central government was expected to boost vaccine production.
Situation overview
Even though days in April 2021 saw record-breaking numbers compared to any other country worldwide, a nation-wide lockdown has not been implemented. The largest religious gathering - the Kumbh Mela, sacred to the Hindus, along with election rallies in certain states continue to be held. Some states and union territories including Maharashtra, Delhi, and Karnataka had issued curfews and lockdowns to try to curb the spread of infections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe global COVID-19 pandemic is still ongoing, and cross-country and cross-period variation in COVID-19 age-adjusted case fatality rates (CFRs) has not been clarified. Here, we aimed to identify the country-specific effects of booster vaccination and other features that may affect heterogeneity in age-adjusted CFRs with a worldwide scope, and to predict the benefit of increasing booster vaccination rate on future CFR.MethodCross-temporal and cross-country variations in CFR were identified in 32 countries using the latest available database, with multi-feature (vaccination coverage, demographic characteristics, disease burden, behavioral risks, environmental risks, health services and trust) using Extreme Gradient Boosting (XGBoost) algorithm and SHapley Additive exPlanations (SHAP). After that, country-specific risk features that affect age-adjusted CFRs were identified. The benefit of booster on age-adjusted CFR was simulated by increasing booster vaccination by 1–30% in each country.ResultsOverall COVID-19 age-adjusted CFRs across 32 countries ranged from 110 deaths per 100,000 cases to 5,112 deaths per 100,000 cases from February 4, 2020 to Jan 31, 2022, which were divided into countries with age-adjusted CFRs higher than the crude CFRs and countries with age-adjusted CFRs lower than the crude CFRs (n = 9 and n = 23) when compared with the crude CFR. The effect of booster vaccination on age-adjusted CFRs becomes more important from Alpha to Omicron period (importance scores: 0.03–0.23). The Omicron period model showed that the key risk factors for countries with higher age-adjusted CFR than crude CFR are low GDP per capita and low booster vaccination rates, while the key risk factors for countries with higher age-adjusted CFR than crude CFR were high dietary risks and low physical activity. Increasing booster vaccination rates by 7% would reduce CFRs in all countries with age-adjusted CFRs higher than the crude CFRs.ConclusionBooster vaccination still plays an important role in reducing age-adjusted CFRs, while there are multidimensional concurrent risk factors and precise joint intervention strategies and preparations based on country-specific risks are also essential.
The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
The coronavirus (COVID-19) epidemic in Germany began in March 2020, with high new daily case numbers still being recorded during 2023. The pandemic is ongoing.
Staying home
The coronavirus (COVID-19) outbreak was declared a pandemic by the World Health Organisation on March 11, 2020. This declaration immediately impacted life in Germany on all levels. Rising coronavirus (COVID-19) case numbers in March-April led to the swift implementation of nationwide distancing and crowd control measures to stop further spread of the virus, which primarily transferred most easily from person to person. From a large-scale economic shutdown, venue, school, daycare and university closures, to social distancing and the contact ban officially implemented by the German government, seemingly in the space of days life as the population knew it came to a standstill in the whole country.
Unlockdown
Later in April 2020, Germany began easing some of the restrictions related to the coronavirus (COVID-19) outbreak as case numbers began to drop. Elements of uncertainty remain and touch on various aspects, for example, regarding national mental and physical health, both among adults and children, the possibility of long-term effects from the virus, immunity. A rising worry among European nations was economic recovery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, area, population density, latitude, and longitude data were obtained from Johns Hopkins University alongside Covid-19 data [23].
The first two cases of the new coronavirus (COVID-19) in Italy were recorded between the end of January and the beginning of February 2020. Since then, the number of cases in Italy increased steadily, reaching over 26.9 million as of January 8, 2025. The region mostly hit by the virus in the country was Lombardy, counting almost 4.4 million cases. On January 11, 2022, 220,532 new cases were registered, which represented the biggest daily increase in cases in Italy since the start of the pandemic. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After over two years of public reporting, the State Profile Report will no longer be produced and distributed after February 2023. The final release was on February 23, 2023. We want to thank everyone who contributed to the design, production, and review of this report and we hope that it provided insight into the data trends throughout the COVID-19 pandemic. Data about COVID-19 will continue to be updated at CDC’s COVID Data Tracker.
The State Profile Report (SPR) is generated by the Data Strategy and Execution Workgroup in the Joint Coordination Cell, in collaboration with the White House. It is managed by an interagency team with representatives from multiple agencies and offices (including the United States Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention, the HHS Assistant Secretary for Preparedness and Response, and the Indian Health Service). The SPR provides easily interpretable information on key indicators for each state, down to the county level.
It is a weekly snapshot in time that:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), is now sweeping across the world. A substantial proportion of infections only lead to mild symptoms or are asymptomatic, but the proportion and infectivity of asymptomatic infections remains unknown. In this paper, we proposed a model to estimate the proportion and infectivity of asymptomatic cases, using COVID-19 in Henan Province, China, as an example.Methods: We extended the conventional susceptible-exposed-infectious-recovered model by including asymptomatic, unconfirmed symptomatic, and quarantined cases. Based on this model, we used daily reported COVID-19 cases from January 21 to February 26, 2020, in Henan Province to estimate the proportion and infectivity of asymptomatic cases, as well as the change of effective reproductive number, Rt.Results: The proportion of asymptomatic cases among COVID-19 infected individuals was 42% and the infectivity was 10% that of symptomatic ones. The basic reproductive number R0 = 2.73, and Rt dropped below 1 on January 31 under a series of measures.Conclusion: The spread of the COVID-19 epidemic was rapid in the early stage, with a large number of asymptomatic infected individuals having relatively low infectivity. However, it was quickly brought under control with national measures.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.