100+ datasets found
  1. C

    COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    Updated May 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/COVID-19-Cases-Tests-and-Deaths-by-ZIP-Code-Histor/yhhz-zm2v
    Explore at:
    kml, xml, csv, kmz, xlsx, application/geo+jsonAvailable download formats
    Dataset updated
    May 23, 2024
    Dataset authored and provided by
    City of Chicago
    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death.

    For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection.

    The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code.

    All data are provisional and subject to change. Information is updated as additional details are received.

    To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)

  2. y

    Illinois Coronavirus Cases (DISCONTINUED)

    • ycharts.com
    html
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for Disease Control and Prevention (2022). Illinois Coronavirus Cases (DISCONTINUED) [Dataset]. https://ycharts.com/indicators/illinois_coronavirus_cases
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 19, 2022
    Dataset provided by
    YCharts
    Authors
    Center for Disease Control and Prevention
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 22, 2020 - Oct 18, 2022
    Area covered
    Illinois
    Variables measured
    Illinois Coronavirus Cases (DISCONTINUED)
    Description

    View daily updates and historical trends for Illinois Coronavirus Cases (DISCONTINUED). Source: Center for Disease Control and Prevention. Track economic …

  3. Chicago COVID-19 Dataset

    • kaggle.com
    zip
    Updated Jul 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Park (2022). Chicago COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ryandpark/chicago-covid19-dataset
    Explore at:
    zip(12812 bytes)Available download formats
    Dataset updated
    Jul 20, 2022
    Authors
    Ryan Park
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Chicago
    Description

    Description Source data: https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html.

    Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".

    Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death.

    For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection.

    The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code.

    All data are provisional and subject to change. Information is updated as additional details are received.

    To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)

  4. d

    COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates -...

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-daily-rolling-average-case-and-death-rates
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey

  5. I

    Spatial accessibility of COVID-19 healthcare resources in Illinois, USA

    • databank.illinois.edu
    Updated Mar 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeon-Young Kang; Alexander Michels; Fangzheng Lyu; Shaohua Wang; Nelson Agbodo; Vincent L Freeman; Shaowen Wang; Padmanabhan Anand (2021). Spatial accessibility of COVID-19 healthcare resources in Illinois, USA [Dataset]. http://doi.org/10.13012/B2IDB-6582453_V1
    Explore at:
    Dataset updated
    Mar 14, 2021
    Authors
    Jeon-Young Kang; Alexander Michels; Fangzheng Lyu; Shaohua Wang; Nelson Agbodo; Vincent L Freeman; Shaowen Wang; Padmanabhan Anand
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Illinois, United States
    Dataset funded by
    U.S. National Science Foundation (NSF)
    Description

    This dataset contains all the code, notebooks, datasets used in the study conducted to measure the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Specifically, the dataset measures spatial access for people to hospitals and ICU beds in Illinois. The spatial accessibility is measured by the use of an enhanced two-step floating catchment area (E2FCA) method (Luo & Qi, 2009), which is an outcome of interactions between demands (i.e, # of potential patients; people) and supply (i.e., # of beds or physicians). The result is a map of spatial accessibility to hospital beds. It identifies which regions need more healthcare resources, such as the number of ICU beds and ventilators. This notebook serves as a guideline of which areas need more beds in the fight against COVID-19. ## What's Inside A quick explanation of the components of the zip file * COVID-19Acc.ipynb is a notebook for calculating spatial accessibility and COVID-19Acc.html is an export of the notebook as HTML. * Data contains all of the data necessary for calculations: * Chicago_Network.graphml/Illinois_Network.graphml are GraphML files of the OSMNX street networks for Chicago and Illinois respectively. * GridFile/ has hexagonal gridfiles for Chicago and Illinois * HospitalData/ has shapefiles for the hospitals in Chicago and Illinois * IL_zip_covid19/COVIDZip.json has JSON file which contains COVID cases by zip code from IDPH * PopData/ contains population data for Chicago and Illinois by census tract and zip code. * Result/ is where we write out the results of the spatial accessibility measures * SVI/contains data about the Social Vulnerability Index (SVI) * img/ contains some images and HTML maps of the hospitals (the notebook generates the maps) * README.md is the document you're currently reading! * requirements.txt is a list of Python packages necessary to use the notebook (besides Jupyter/IPython). You can install the packages with python3 -m pip install -r requirements.txt

  6. U

    United States SB: Illinois (IL): COVID-19 Impact: Large Negative Effect

    • ceicdata.com
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States SB: Illinois (IL): COVID-19 Impact: Large Negative Effect [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-midwest-region/sb-illinois-il-covid19-impact-large-negative-effect
    Explore at:
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: Illinois (IL): COVID-19 Impact: Large Negative Effect data was reported at 25.000 % in 11 Apr 2022. This records a decrease from the previous number of 25.500 % for 04 Apr 2022. United States SB: Illinois (IL): COVID-19 Impact: Large Negative Effect data is updated weekly, averaging 24.900 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 27.400 % in 21 Feb 2022 and a record low of 21.200 % in 27 Dec 2021. United States SB: Illinois (IL): COVID-19 Impact: Large Negative Effect data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S047: Small Business Pulse Survey: by State: Midwest Region: Weekly, Beg Monday (Discontinued).

  7. C

    Covid 60655

    • data.cityofchicago.org
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2024). Covid 60655 [Dataset]. https://data.cityofchicago.org/widgets/mxmg-zkv6?mobile_redirect=true
    Explore at:
    kml, csv, xml, kmz, xlsx, application/geo+jsonAvailable download formats
    Dataset updated
    May 23, 2024
    Authors
    City of Chicago
    Description

    This is the place to look for important information about how to use this dataset, so please expand this box and read on!

    This is the source data for some of the metrics available at https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html.

    For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.

    Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".

    Confirmed cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among confirmed cases based on the week of death.

    For tests, each individual is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts do not include multiple tests for the same person or some negative tests not reported to CDPH.

    The “Percent Tested Positive” columns are calculated by dividing the corresponding Cases and Tests columns. Because of the data limitations for the Tests columns, as well as strict criteria for performing COVID-19 tests, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code. Of particular note, these rates do not represent population-level disease surveillance.

    Population counts are from the 2010 Decennial Census.

    All data are provisional and subject to change. Information is updated as additional details are received.

    To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal.

    Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records

  8. I

    Dataset for "Arguing about Controversial Science in the News: Does Epistemic...

    • databank.illinois.edu
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heng Zheng; Jodi Schneider (2024). Dataset for "Arguing about Controversial Science in the News: Does Epistemic Uncertainty Contribute to Information Disorder?" [Dataset]. http://doi.org/10.13012/B2IDB-4781172_V1
    Explore at:
    Dataset updated
    Mar 27, 2024
    Authors
    Heng Zheng; Jodi Schneider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Dataset funded by
    The United States Institute of Museum and Library Services
    Description

    To gather news articles from the web that discuss the Cochrane Review, we used Altmetric Explorer from Altmetric.com and retrieved articles on August 1, 2023. We selected all articles that were written in English, published in the United States, and had a publication date prior to March 10, 2023 (according to the “Mention Date” on Altmetric.com). This date is significant as it is when Cochrane issued a statement about the "misleading interpretation" of the Cochrane Review. The collection of news articles is presented in the Altmetric_data.csv file. The dataset contains the following data that we exported from Altmetric Explorer: - Publication date of the news article - Title of the news article - Source/publication venue of the news article - URL - Country We manually checked and added the following information: - Whether the article still exists - Whether the article is accessible - Whether the article is from the original source We assigned MAXQDA IDs to the news articles. News articles were assigned the same ID when they were (a) identical or (b) in the case of Article 207, closely paraphrased, paragraph by paragraph. Inaccessible items were assigned a MAXQDA ID based on their "Mention Title". For each article from Altmetric.com, we first tried to use the Web Collector for MAXQDA to download the article from the website and imported it into MAXQDA (version 22.7.0). If an article could not be retrieved using the Web Collector, we either downloaded the .html file or in the case of Article 128, retrieved it from the NewsBank database through the University of Illinois Library. We then manually extracted direct quotations from the articles using MAXQDA. We included surrounding words and sentences, and in one case, a news agency’s commentary, around direct quotations for context where needed. The quotations (with context) are the positions in our analysis. We also identified who was quoted. We excluded quotations when we could not identify who or what was being quoted. We annotated quotations with codes representing groups (government agencies, other organizations, and research publications) and individuals (authors of the Cochrane Review, government agency representatives, journalists, and other experts such as epidemiologists). The MAXQDA_data.csv file contains excerpts from the news articles that contain the direct quotations we identified. For each excerpt, we included the following information: - MAXQDA ID of the document from which the excerpt originates; - The collection date and source of the document; - The code with which the excerpt is annotated; - The code category; - The excerpt itself.

  9. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  10. U

    United States SB: IL: COVID-19 Impact: Moderate Positive Effect

    • ceicdata.com
    Updated Apr 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States SB: IL: COVID-19 Impact: Moderate Positive Effect [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-midwest-region/sb-il-covid19-impact-moderate-positive-effect
    Explore at:
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: IL: COVID-19 Impact: Moderate Positive Effect data was reported at 9.100 % in 11 Apr 2022. This records an increase from the previous number of 6.500 % for 04 Apr 2022. United States SB: IL: COVID-19 Impact: Moderate Positive Effect data is updated weekly, averaging 6.950 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 9.100 % in 11 Apr 2022 and a record low of 5.200 % in 03 Jan 2022. United States SB: IL: COVID-19 Impact: Moderate Positive Effect data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S037: Small Business Pulse Survey: by State: Midwest Region: Weekly, Beg Monday (Discontinued).

  11. D

    Medical Examiner Case Archive - COVID-19 Related Deaths

    • datacatalog.cookcountyil.gov
    Updated Nov 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook County Medical Examiner (2025). Medical Examiner Case Archive - COVID-19 Related Deaths [Dataset]. https://datacatalog.cookcountyil.gov/widgets/3trz-enys
    Explore at:
    kmz, xml, kml, csv, application/geo+json, xlsxAvailable download formats
    Dataset updated
    Nov 18, 2025
    Dataset authored and provided by
    Cook County Medical Examiner
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Effective April 1, 2022, the Cook County Medical Examiner’s Office no longer takes jurisdiction over hospital, nursing home or hospice COVID-19 deaths unless there is another factor that falls within the Office’s jurisdiction. Data continues to be collected for COVID-19 deaths in Cook County on the Illinois Dept. of Public Health COVID-19 dashboard (https://dph.illinois.gov/covid19/data.html).

    This filtered view contains information about COVID-19 related deaths that occurred in Cook County that were under the Medical Examiner’s jurisdiction.This view was created by looking for "covid" in any of these fields: Primary Cause, Primary Cause Line A, Primary Cause Line B, Primary Cause Line C, or Secondary Cause.

    For more information see: https://datacatalog.cookcountyil.gov/stories/s/ttk4-trbu

    Not all deaths that occur in Cook County are reported to the Medical Examiner or fall under the jurisdiction of the Medical Examiner. The Medical Examiner’s Office determines cause and manner of death for those cases that fall under its jurisdiction. Cause of death describes the reason the person died. This dataset includes information from deaths starting in August 2014 to the present, with information updated daily.

    Changes: December 16, 2022: The Cook County Commissioner District field now reflects the boundaries that went into effect December 5, 2022.

  12. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  13. C

    COVID-19 Hospital Capacity Metrics - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2023). COVID-19 Hospital Capacity Metrics - Historical [Dataset]. https://data.cityofchicago.org/widgets/f3he-c6sv
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    City of Chicago
    Description

    NOTE: This dataset is historical-only as of 5/10/2023. All data currently in the dataset will remain, but new data will not be added. The recommended alternative dataset for similar data beyond that date is  https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u. (This is not a City of Chicago site. Please direct any questions or comments through the contact information on the site.)

    During the COVID-19 pandemic, the Chicago Department of Public Health (CDPH) required EMS Region XI (Chicago area) hospitals to report hospital capacity and patient impact metrics related to COVID-19 to CDPH through the statewide EMResource system. This requirement has been lifted as of May 9, 2023, in alignment with the expiration of the national and statewide COVID-19 public health emergency declarations on May 11, 2023. However, all hospitals will still be required by the U.S. Department of Health and Human Services (HHS) to report COVID-19 hospital capacity and utilization metrics into the HHS Protect system through the CDC’s National Healthcare Safety Network until April 30, 2024. Facility-level data from the HHS Protect system can be found at healthdata.gov.

    Until May 9, 2023, all Chicago (EMS Region XI) hospitals (n=28) were required to report bed and ventilator capacity, availability, and occupancy to the Chicago Department of Public Health (CDPH) daily. A list of reporting hospitals is included below. All data represent hospital status as of 11:59 pm for that calendar day. Counts include Chicago residents and non-residents.

    ICU bed counts include both adult and pediatric ICU beds. Neonatal ICU beds are not included. Capacity refers to all staffed adult and pediatric ICU beds. Availability refers to all available/vacant adult and pediatric ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in ICU on 03/19/2020. Hospitals began reporting ICU surge capacity as part of total capacity on 5/18/2020.

    Acute non-ICU bed counts include burn unit, emergency department, medical/surgery (ward), other, pediatrics (pediatric ward) and psychiatry beds. Burn beds include those approved by the American Burn Association or self-designated. Capacity refers to all staffed acute non-ICU beds. An additional 500 acute/non-ICU beds were added at the McCormick Place Treatment Facility on 4/15/2020. These beds are not included in the total capacity count. The McCormick Place Treatment Facility closed on 05/08/2020. Availability refers to all available/vacant acute non-ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in acute non-ICU beds on 04/03/2020.

    Ventilator counts prior to 04/24/2020 include all full-functioning mechanical ventilators, with ventilators with bilevel positive airway pressure (BiPAP), anesthesia machines, and portable/transport ventilators counted as surge. Beginning 04/24/2020, ventilator counts include all full-functioning mechanical ventilators, BiPAP, anesthesia machines and portable/transport ventilators. Ventilators are counted regardless of ability to staff. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases on ventilators on 03/19/2020. CDPH has access to additional ventilators from the EAMC (Emergency Asset Management Center) cache. These ventilators are included in the total capacity count.

    Chicago (EMS Region 11) hospitals: Advocate Illinois Masonic Medical Center, Advocate Trinity Hospital, AMITA Resurrection Medical Center Chicago, AMITA Saint Joseph Hospital Chicago, AMITA Saints Mary & Elizabeth Medical Center, Ann & Robert H Lurie Children's Hospital, Comer Children's Hospital, Community First Medical Center, Holy Cross Hospital, Jackson Park Hospital & Medical Center, John H. Stroger Jr. Hospital of Cook County, Loretto Hospital, Mercy Hospital and Medical Center, , Mount Sinai Hospital, Northwestern Memorial Hospital, Norwegian American Hospital, Roseland Community Hospital, Rush University Medical Center, Saint Anthony Hospital, Saint Bernard Hospital, South Shore Hospital, Swedish Hospital, Thorek Memorial Hospital, Thorek Hospital Andersonville. University of Chicago Medical Center, University of Illinois Hospital & Health Sciences System, Weiss Memorial Hospital.

    Chicago (EMS Region 11) specialty hospitals: Provident Hospital/Cook County, RML Specialty Hospital, Chicago, Montrose Behavioral Health (previously Lakeshore Hospital.) Shirley Ryan AbilityLab (previously RIC), Jesse Brown VA Medical Center, Kindred Chicago – North, Hartgrove Hospital, Kindred Chicago – Lakeshore, Kindred Chicago – Central, Shriners Hospital for Children – Chicago, LaRabida Hospital.

    Data Source: Hospitals reporting to CDPH via EMResource (Juvare)

  14. O

    Open Data Covid19

    • dati.toscana.it
    • staging.dati.toscana.it
    • +1more
    csv
    Updated Oct 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ars (2020). Open Data Covid19 [Dataset]. https://dati.toscana.it/dataset/open-data-covid19
    Explore at:
    csv(1606041)Available download formats
    Dataset updated
    Oct 4, 2020
    Dataset provided by
    Ars
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Il dataset contiene: i numeri totali dell’ultimo aggiornamento giornaliero disponibile e la variazione percentuale rispetto alla giornata precedente.

    Le info messe a disposizione: geografia, giorno, data, totale casi positivi, andamento dei casi positivi x1000 abitanti, deceduti, incremento deceduti rispetto alla giornata precedente x100, letalità, totale dei ricoveri, incremento ricoveri rispetto alla giornata precedente x100, attualmente positivi, dimessi, tamponi effettuati, incremento tamponi rispetto alla giornata precedente x100 suddivisi per provincia, AUSL (quando possibile). I dati saranno aggiornati entro le ore 20 di ogni giorno.

    ****** ATTENZIONE!! Dal 24 giugno 2022, il Ministero della Salute ha modificato il sistema di rilevazione dei dati sulla diffusione del Covid-19. I casi positivi non sono più indicati secondo la provincia di notifica bensì in base alla provincia di residenza o domicilio.

    ****** ATTENZIONE!! DA giugno 2023 avremo un solo aggiornamento settimanale.

  15. U

    United States SB: IL: COVID-19 Impact: Moderate Negative Effect

    • ceicdata.com
    Updated Apr 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States SB: IL: COVID-19 Impact: Moderate Negative Effect [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-midwest-region/sb-il-covid19-impact-moderate-negative-effect
    Explore at:
    Dataset updated
    Apr 23, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: IL: COVID-19 Impact: Moderate Negative Effect data was reported at 41.900 % in 11 Apr 2022. This records a decrease from the previous number of 43.300 % for 04 Apr 2022. United States SB: IL: COVID-19 Impact: Moderate Negative Effect data is updated weekly, averaging 43.400 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 50.400 % in 28 Feb 2022 and a record low of 39.200 % in 22 Nov 2021. United States SB: IL: COVID-19 Impact: Moderate Negative Effect data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S047: Small Business Pulse Survey: by State: Midwest Region: Weekly, Beg Monday (Discontinued).

  16. f

    Table 1_Lymphocyte loss and plasmacytosis are associated with IL-6- and...

    • figshare.com
    docx
    Updated Oct 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bianca Ramos Mesquita; Lilian Verena da Silva Carvalho; Leonardo Cardoso Gomes Baqueiro; Reginaldo Brito; Luma Bahia Figueiredo Pinto; Erina Masayo Alves Hassegawa; Jonathan Luís Magalhães Fontes; Cláudio Pereira Figueira; Eraldo Salustiano de Moura; Maria Brandão Tavares; Carla Pagliari; Geraldo G. S. Oliveira; Washington L. C. dos-Santos (2025). Table 1_Lymphocyte loss and plasmacytosis are associated with IL-6- and TNF-producing cells in the spleens of fatal COVID-19 cases.docx [Dataset]. http://doi.org/10.3389/fcimb.2025.1645378.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 23, 2025
    Dataset provided by
    Frontiers
    Authors
    Bianca Ramos Mesquita; Lilian Verena da Silva Carvalho; Leonardo Cardoso Gomes Baqueiro; Reginaldo Brito; Luma Bahia Figueiredo Pinto; Erina Masayo Alves Hassegawa; Jonathan Luís Magalhães Fontes; Cláudio Pereira Figueira; Eraldo Salustiano de Moura; Maria Brandão Tavares; Carla Pagliari; Geraldo G. S. Oliveira; Washington L. C. dos-Santos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe spleen undergoes changes during acute and chronic infections, which may contribute to immune dysregulation and disease aggravation. In fatal cases of COVID-19, pronounced splenic changes are noted. However, the role played by these alterations in patient mortality remains poorly understood. Objectives: We aim to characterize structural alterations and changes in splenic cell populations in fatal COVID-19 cases, as a potential substrate for immune dysfunction associated with bacterial coinfection and mortality in severe infectious diseases.MethodsIn this study, we characterized the histological and cellular changes observed in the spleens of nine patients who died from COVID-19. Spleens from five healthy individuals were used as a reference. Histopathological analysis and immunolabeling techniques were employed to evaluate tissue architecture, cell composition, cytokine production, and cell death.ResultsCOVID-19-associated changes included atrophy of the white pulp (WP), reduced cellular density in the red pulp (RP), and reticular fiber fragmentation. Leukocyte phenotyping revealed substantial lymphocyte depletion across all splenic compartments, accompanied by plasma cell accumulation. These alterations correlated with increased numbers of IL-6- and TNF-producing cells. Additionally, a high density of TUNEL-positive cells indicated widespread cell death in the spleens of COVID-19 patients.ConclusionThese findings suggest that the spleen contributes to the inflammatory response in SARS-CoV-2 infection, acting both as a source of inflammatory cytokines as well as a site of leukocyte, particularly lymphocyte, death both in association with the exacerbated release of IL-6 and TNF.

  17. COVID-19 Data base.csv

    • figshare.com
    txt
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryo Saji (2021). COVID-19 Data base.csv [Dataset]. http://doi.org/10.6084/m9.figshare.15059814.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ryo Saji
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Clinical data from 102 Japanese patients with COVID-19.

  18. Data_Sheet_1_T-Cell Subsets and Interleukin-10 Levels Are Predictors of...

    • frontiersin.figshare.com
    pdf
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal F. Alshammary; Jawaher M. Alsughayyir; Khalid K. Alharbi; Abdulrahman M. Al-Sulaiman; Haifa F. Alshammary; Heba F. Alshammary (2023). Data_Sheet_1_T-Cell Subsets and Interleukin-10 Levels Are Predictors of Severity and Mortality in COVID-19: A Systematic Review and Meta-Analysis.pdf [Dataset]. http://doi.org/10.3389/fmed.2022.852749.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Amal F. Alshammary; Jawaher M. Alsughayyir; Khalid K. Alharbi; Abdulrahman M. Al-Sulaiman; Haifa F. Alshammary; Heba F. Alshammary
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundMany COVID-19 patients reveal a marked decrease in their lymphocyte counts, a condition that translates clinically into immunodepression and is common among these patients. Outcomes for infected patients vary depending on their lymphocytopenia status, especially their T-cell counts. Patients are more likely to recover when lymphocytopenia is resolved. When lymphocytopenia persists, severe complications can develop and often lead to death. Similarly, IL-10 concentration is elevated in severe COVID-19 cases and may be associated with the depression observed in T-cell counts. Accordingly, this systematic review and meta-analysis aims to analyze T-cell subsets and IL-10 levels among COVID-19 patients. Understanding the underlying mechanisms of the immunodepression observed in COVID-19, and its consequences, may enable early identification of disease severity and reduction of overall morbidity and mortality.MethodsA systematic search was conducted covering PubMed MEDLINE, Scopus, Web of Science, and EBSCO databases for journal articles published from December 1, 2019 to March 14, 2021. In addition, we reviewed bibliographies of relevant reviews and the medRxiv preprint server for eligible studies. Our search covered published studies reporting laboratory parameters for T-cell subsets (CD4/CD8) and IL-10 among confirmed COVID-19 patients. Six authors carried out the process of data screening, extraction, and quality assessment independently. The DerSimonian-Laird random-effect model was performed for this meta-analysis, and the standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for each parameter.ResultsA total of 52 studies from 11 countries across 3 continents were included in this study. Compared with mild and survivor COVID-19 cases, severe and non-survivor cases had lower counts of CD4/CD8 T-cells and higher levels of IL-10.ConclusionOur findings reveal that the level of CD4/CD8 T-cells and IL-10 are reliable predictors of severity and mortality in COVID-19 patients. The study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO); registration number CRD42020218918.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218918, identifier: CRD42020218918.

  19. f

    Data from: Serum Proteomics in COVID-19 Patients: Altered Coagulation and...

    • acs.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angelo D’Alessandro; Tiffany Thomas; Monika Dzieciatkowska; Ryan C. Hill; Richard O. Francis; Krystalyn E. Hudson; James C. Zimring; Eldad A. Hod; Steven L. Spitalnik; Kirk C. Hansen (2023). Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL‑6 Level [Dataset]. http://doi.org/10.1021/acs.jproteome.0c00365.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Angelo D’Alessandro; Tiffany Thomas; Monika Dzieciatkowska; Ryan C. Hill; Richard O. Francis; Krystalyn E. Hudson; James C. Zimring; Eldad A. Hod; Steven L. Spitalnik; Kirk C. Hansen
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Over 5 million people around the world have tested positive for the beta coronavirus SARS-CoV-2 as of May 29, 2020, a third of which are in the United States alone. These infections are associated with the development of a disease known as COVID-19, which is characterized by several symptoms, including persistent dry cough, shortness of breath, chills, muscle pain, headache, loss of taste or smell, and gastrointestinal distress. COVID-19 has been characterized by elevated mortality (over 100 thousand people have already died in the US alone), mostly due to thromboinflammatory complications that impair lung perfusion and systemic oxygenation in the most severe cases. While the levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) have been associated with the severity of the disease, little is known about the impact of IL-6 levels on the proteome of COVID-19 patients. The present study provides the first proteomics analysis of sera from COVID-19 patients, stratified by circulating levels of IL-6, and correlated to markers of inflammation and renal function. As a function of IL-6 levels, we identified significant dysregulation in serum levels of various coagulation factors, accompanied by increased levels of antifibrinolytic components, including several serine protease inhibitors (SERPINs). These were accompanied by up-regulation of the complement cascade and antimicrobial enzymes, especially in subjects with the highest levels of IL-6, which is consistent with an exacerbation of the acute phase response in these subjects. Although our results are observational, they highlight a clear increase in the levels of inhibitory components of the fibrinolytic cascade in severe COVID-19 disease, providing potential clues related to the etiology of coagulopathic complications in COVID-19 and paving the way for potential therapeutic interventions, such as the use of pro-fibrinolytic agents. Raw data for this study are available through ProteomeXchange with identifier PXD020601.

  20. f

    Data from: Efficacy and safety of Ixekizumab vs. low-dose IL-2 vs....

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Souza, Hayala Cristina Cavenague; Vilar, Fernando Crivelenti; Agati, Leandro Barile; Bellissimo-Rodrigues, Fernando; Ferreira, Lucas Roberto Rivabem; da Fonseca, Benedito Antônio Lopes; da Silva, Anna Christina Tojal; Risson, Ricardo; Itinose, Kengi; Júnior, Paulo Louzada; Kallas, Esper Georges; Dusilek, Cesar; Ramacciotti, Eduardo; de Aguiar Quadros, Carlos Augusto; Lopes, Renato Delascio; Aguiar, Valéria Cristina Resende; Bonifácio, Lívia Pimenta; de Oliveira, Caroline Candida Carvalho (2023). Efficacy and safety of Ixekizumab vs. low-dose IL-2 vs. Colchicine vs. standard of care in the treatment of patients hospitalized with moderate-to-critical COVID-19: A pilot randomized clinical trial (STRUCK: Survival Trial Using Cytokine Inhibitors) [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001104935
    Explore at:
    Dataset updated
    Apr 15, 2023
    Authors
    de Souza, Hayala Cristina Cavenague; Vilar, Fernando Crivelenti; Agati, Leandro Barile; Bellissimo-Rodrigues, Fernando; Ferreira, Lucas Roberto Rivabem; da Fonseca, Benedito Antônio Lopes; da Silva, Anna Christina Tojal; Risson, Ricardo; Itinose, Kengi; Júnior, Paulo Louzada; Kallas, Esper Georges; Dusilek, Cesar; Ramacciotti, Eduardo; de Aguiar Quadros, Carlos Augusto; Lopes, Renato Delascio; Aguiar, Valéria Cristina Resende; Bonifácio, Lívia Pimenta; de Oliveira, Caroline Candida Carvalho
    Description

    ABSTRACT Background: Cases of coronavirus disease 2019 (COVID-19) requiring hospitalization continue to appear in vulnerable populations, highlighting the importance of novel treatments. The hyperinflammatory response underlies the severity of the disease, and targeting this pathway may be useful. Herein, we tested whether immunomodulation focusing on interleukin (IL)-6, IL-17, and IL-2, could improve the clinical outcomes of patients admitted with COVID-19. Methods: This multicenter, open-label, prospective, randomized controlled trial was conducted in Brazil. Sixty hospitalized patients with moderate-to-critical COVID-19 received in addition to standard of care (SOC): IL-17 inhibitor (ixekizumab 80 mg SC/week) 1 dose every 4 weeks; low-dose IL-2 (1.5 million IU per day) for 7 days or until discharge; or indirect IL-6 inhibitor (colchicine) orally (0.5 mg) every 8 hours for 3 days, followed by 4 weeks at 0.5 mg 2x/day; or SOC alone. The primary outcome was accessed in the “per protocol” population as the proportion of patients with clinical improvement, defined as a decrease greater or equal to two points on the World Health Organization’s (WHO) seven-category ordinal scale by day 28. Results: All treatments were safe, and the efficacy outcomes did not differ significantly from those of SOC. Interestingly, in the colchicine group, all participants had an improvement of greater or equal to two points on the WHO seven-category ordinal scale and no deaths or patient deterioration were observed. Conclusions: Ixekizumab, colchicine, and IL-2 were demonstrated to be safe but ineffective for COVID-19 treatment. These results must be interpreted cautiously because of the limited sample size.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Chicago (2024). COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical [Dataset]. https://data.cityofchicago.org/Health-Human-Services/COVID-19-Cases-Tests-and-Deaths-by-ZIP-Code-Histor/yhhz-zm2v

COVID-19 Cases, Tests, and Deaths by ZIP Code - Historical

Explore at:
kml, xml, csv, kmz, xlsx, application/geo+jsonAvailable download formats
Dataset updated
May 23, 2024
Dataset authored and provided by
City of Chicago
Description

NOTE: This dataset has been retired and marked as historical-only.

Only Chicago residents are included based on the home ZIP Code as provided by the medical provider. If a ZIP was missing or was not valid, it is displayed as "Unknown".

Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the week the test specimen was collected. For privacy reasons, until a ZIP Code reaches five cumulative cases, both the weekly and cumulative case counts will be blank. Therefore, summing the “Cases - Weekly” column is not a reliable way to determine case totals. Deaths are those that have occurred among cases based on the week of death.

For tests, each test is counted once, based on the week the test specimen was collected. Tests performed prior to 3/1/2020 are not included. Test counts include multiple tests for the same person (a change made on 10/29/2020). PCR and antigen tests reported to Chicago Department of Public Health (CDPH) through electronic lab reporting are included. Electronic lab reporting has taken time to onboard and testing availability has shifted over time, so these counts are likely an underestimate of community infection.

The “Percent Tested Positive” columns are calculated by dividing the number of positive tests by the number of total tests . Because of the data limitations for the Tests columns, such as persons being tested multiple times as a requirement for employment, these percentages may vary in either direction from the actual disease prevalence in the ZIP Code.

All data are provisional and subject to change. Information is updated as additional details are received.

To compare ZIP Codes to Chicago Community Areas, please see http://data.cmap.illinois.gov/opendata/uploads/CKAN/NONCENSUS/ADMINISTRATIVE_POLITICAL_BOUNDARIES/CCAzip.pdf. Both ZIP Codes and Community Areas are also geographic datasets on this data portal.

Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, Illinois Vital Records, American Community Survey (2018)

Search
Clear search
Close search
Google apps
Main menu