India reported over 44 million confirmed cases of the coronavirus (COVID-19) as of October 20, 2023. The number of people infected with the virus was declining across the south Asian country.
What is the coronavirus?
COVID-19 is part of a large family of coronaviruses (CoV) that are transmitted from animals to people. The name COVID-19 is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged. Symptoms of COVID-19 resemble that of the common cold, with fever, coughing, and shortness of breath. However, serious infections can lead to pneumonia, multi-organ failure, severe acute respiratory syndrome, and even death, if appropriate medical help is not provided.
COVID-19 in India
India reported its first case of this coronavirus in late January 2020 in the southern state of Kerala. That led to a nation-wide lockdown between March and June that year to curb numbers from rising. After marginal success, the economy opened up leading to some recovery for the rest of 2020. In March 2021, however, the second wave hit the country causing record-breaking numbers of infections and deaths, crushing the healthcare system. The central government has been criticized for not taking action this time around, with "#ResignModi" trending on social media platforms in late April. The government's response was to block this line of content on the basis of fighting misinformation and reducing panic across the country.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS CASES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.
Analysis and Visualization of spread of coronavirus in India.
The dataset raw_data.csv file, contains information about the coronavirus infected patients from time period 2-Feb-2020 to 27-March-2020. It has information of all the states, their districts and cities. The data is very much useful in realising the threats that are being caused by the virus and also the source from where it is being spread in India. Also the travel history of patients and their Current health Status makes it easier to develop a model and predict the covid19 hotspots in the nation.
We wouldn't be here without the help of covid19india website. The dataset was obtained from website mentioned.
The cases of coronavirus infected people are increasing, this has caused to serious health calamities across the country. This has led to huge crisis on healthcare and Medicine and also the organisations that work to face and tackle coronavirus. Therefore it is of great importance that the data needs to be analysed and solutions need to be found out by looking for parameters that will help take down the virus.
India reported almost 45 million cases of the coronavirus (COVID-19) as of October 20, 2023, with more than 44 million recoveries and about 532 thousand fatalities. The number of cases in the country had a decreasing trend in the past months.
Burden on the healthcare system
With the world's second largest population in addition to an even worse second wave of the coronavirus pandemic seems to be crushing an already inadequate healthcare system. Despite vast numbers being vaccinated, a new variant seemed to be affecting younger age groups this time around. The lack of ICU beds, black market sales of oxygen cylinders and drugs needed to treat COVID-19, as well as overworked crematoriums resorting to mass burials added to the woes of the country. Foreign aid was promised from various countries including the United States, France, Germany and the United Kingdom. Additionally, funding from the central government was expected to boost vaccine production.
Situation overview
Even though days in April 2021 saw record-breaking numbers compared to any other country worldwide, a nation-wide lockdown has not been implemented. The largest religious gathering - the Kumbh Mela, sacred to the Hindus, along with election rallies in certain states continue to be held. Some states and union territories including Maharashtra, Delhi, and Karnataka had issued curfews and lockdowns to try to curb the spread of infections.
The Red, Orange and Green Zone classification is based on factors such as the number of novel coronavirus cases, the doubling rate of Covid-19 cases, and the extent of testing and surveillance. Red Zones have a high number of cases and a high doubling rate, Orange Zones have comparatively fewer cases and Green Zones have not had any cases in the last 21 days.
Here is the full list of districts and their zone classification. This classification comes into effect from May 4 and will last for around a week after which it will be revised. This list is based on the classification of the central government; states and Union Territories may make some modifications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Analysis and Visualization of spread of coronavirus in India.
The dataset raw_data.csv file, contains information about the coronavirus infected patients from time period 2-Feb-2020 to 14-April-2020 in India. It has information of all the states, their districts and cities. The data is very much useful in realising the threats that are being caused by the virus and also the source from where it is being spread in India. Also the travel history of patients and their Current health Status makes it easier to develop a model and predict the covid19 hotspots in the nation.
We wouldn't be here without the help of covid19india website. The dataset was obtained from website mentioned.
The cases of coronavirus infected people are increasing, this has caused to serious health calamities across the country. This has led to huge crisis on healthcare and Medicine and also the organisations that work to face and tackle coronavirus. Therefore it is of great importance that the data needs to be analysed and solutions need to be found out by looking for parameters that will help take down the virus.
As of January 1, 2025, the number of active coronavirus (COVID-19) infections in Italy was approximately 218,000. Among these, 42 infected individuals were being treated in intensive care units. Another 1,332 individuals infected with the coronavirus were hospitalized with symptoms, while approximately 217,000 thousand were in isolation at home. The total number of coronavirus cases in Italy reached over 26.9 million (including active cases, individuals who recovered, and individuals who died) as of the same date. The region mostly hit by the spread of the virus was Lombardy, which counted almost 4.4 million cases.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/
Current Epidemiology Situation and Forecast
To date, the greatest numbers of cases and deaths have occurred in the US, India, and Brazil
The global case fatality rate (%) has continued to decline
Increasing uncertainty of infection rates renders forecasting difficult in the worst-hit countries Read More
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundRecent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India.MethodsWhole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7.ResultsThe mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men.ConclusionThe current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.
COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Maharashtra confirmed over 8.1 million cases of the coronavirus (COVID-19) as of October 20, 2023, with over 148 thousand fatalities and over eight million recoveries. A state-wide lockdown was implemented in late April 2021 to attempt reducing infections and deaths.
The Indian state of Punjab reported the highest number of active coronavirus (COVID-19) cases of over one thousand cases as of October 20, 2023. Kerala and Karnataka followed, with relatively lower casualties. That day, there were a total of over 44 million confirmed infections across India.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset corresponds to paper titled "A Mathematical Model for COVID-19 Considering Waning Immunity, Vaccination and Control Measures". In this work we define a modified SEIR model that accounts for the spread of infection during the latent period, infections from asymptomatic or pauci-symptomatic infected individuals, potential loss of acquired immunity, people’s increasing awareness of social distancing and the use of vaccination as well as non-pharmaceutical interventions like social confinement. We estimate model parameters in three different scenarios - in Italy, where there is a growing number of cases and re-emergence of the epidemic, in India, where there are significant number of cases post confinement period and in Victoria, Australia where a re-emergence has been controlled with severe social confinement program. Our result shows the benefit of long term confinement of 50% or above population and extensive testing. With respect to loss of acquired immunity, our model suggests higher impact for Italy. We also show that a reasonably effective vaccine with mass vaccination program can be successful in significantly controlling the size of infected population. We show that for India, a reduction in contact rate by 50% compared to a reduction of 10% in the current stage can reduce death from 0.0268% to 0.0141% of population. Similarly, for Italy we show that reducing contact rate by half can reduce a potential peak infection of 15% population to less than 1.5% of population, and potential deaths from 0.48% to 0.04%. With respect to vaccination, we show that even a 75% efficient vaccine administered to 50% population can reduce the peak number of infected population by nearly 50% in Italy. Similarly, for India, a 0.056% of population would die without vaccination, while 93.75% efficient vaccine given to 30\% population would bring this down to 0.036% of population, and 93.75% efficient vaccine given to 70% population would bring this down to 0.034%.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
To understand the impact of COVID-19 on the implementation of the peer education programme of the National Adolescent Health Programme-Rashtriya Kishor Swasthya Karyakram (RKSK); repurposing of the RKSK health workers and Peer Educators (PEs) in COVID-19 response activities and effect on adolescents´ health and development issues. Virtual in-depth interviews were conducted with stakeholders (n=31) (aged 15 to 54 years) engaged in the implementation of the RKSK and peer education programme at state, district, block, and village levels in Madhya Pradesh and Maharashtra (India). These interviews were thematically coded and analysed to address the research objectives. Despite most peer education programme activities being stopped, delayed, or disrupted during the pandemic and subsequent lockdown, some communication networks previously established, helped facilitate public health communication regarding COVID-19 and RKSK, between health workers, PEs, and adolescents. There was repurposing of RKSK health workers and PEs’ role towards COVID-19 response-related activities. PEs, with support from health workers, were involved in disseminating COVID-19 information, maintaining migrant and quarantine records, conducting household surveys for recording COVID-19 active cases and providing essential items (grocery, sanitary napkins, etc.) to communities and adolescents.
India is home to 243 million adolescents, yet there is a lack of data on several health indicators and no national data on the current levels of knowledge, perceptions, and practices of adolescents. In 2014, the Ministry of Health and Family Welfare (MOHFW), Government of India (GOI) launched a comprehensive National Adolescent Health Programme-Rashtriya Kishor Swasthya Karyakram (RKSK), to emphasize community-based health promotion and strengthening preventive, diagnostic and curative service across health system related to 6 strategic priorities. RKSK interventions, which include a Peer Educator (PE) Programme component, are being implemented in a phased manner; the first phase targets 213 selected High Priority Districts in 28 states of India. The PE programme is designed to provide life skills, increase knowledge and awareness among PEs and adolescents of their needs under six strategic priorities, and the availability of services and care at Adolescent Friendly Health Clinics (AFHC), which should lead to increased adolescents' attendance at AFHCs. The year 2020 has experienced an unprecedented pandemic (COVID-19), intensely affecting millions of people, including adolescents (10-19 years). The study's objective is to explore the implementation of the Peer Educator Intervention for improving adolescent health in India's National Adolescent Health Programme during COVID-19 (i-Saathiya). Aims: Research Aim 1: Describe the process of implementation, and context of the PE Programme under the RKSK during COVID-19, in two Indian states. Research Aim 2: Understand peer educators’ engagement during the COVID-19 pandemic and adolescents’ response to PE engagement in the community and accessing the health system. Research Aim 3: Understand the resource use and implementation cost of peer educator programme and their variations across two states of India. Research Aim 4: Identify key components of PE intervention that work to improve health system access and community engagement of adolescents during COVID-19 for informing and building back better response and for scaling up (Research to Policy and program action) of adolescent health programmes in other states of India. A mixed methods cross-sectional study was conducted in the two states Madhya Pradesh and Maharashtra. Data was collected quantitatively through surveys, routine program data, and qualitatively through in-depth interviews, focus group discussions, and semi-structured observations. As part of this larger study, before commencing data collection a situational analysis was undertaken in the two Indian states (Madhya Pradesh and Maharashtra) from June-October, 2020, with the relevant stakeholders involved in the RKSK/PE programme.
COVID-19 was first detected in Brazil on February 27, 2020, making it the first Latin American country to report a case of the novel coronavirus. Since then, the number of infections has risen drastically, reaching approximately 38 million cases by July 28, 2024. Meanwhile, the first local death due to the disease was reported in March 2020. Four years later, the number of fatal cases had surpassed 700,000. The highest COVID-19 death toll in Latin America With a population of more than 211 million inhabitants as of 2020, Brazil is the most populated country in Latin America. This nation is also among the most affected by COVID-19 in number of deaths, not only within the Latin American region, but also worldwide, just behind the United States. These figures have raised a debate on how the Brazilian government has dealt with the pandemic. In fact, according to a study carried out in May 2021, more than half of Brazilians surveyed disapproved of the way in which former president Jair Bolsonaro had been dealing with the health crisis. In comparison, a third of respondents had a similar opinion about the Ministry of Health. Brazil’s COVID-19 vaccination campaign rollout Brazil’s vaccination campaign started at the beginning of 2021, when a nurse from São Paulo became the first person in the country to get vaccinated against the disease. A few years later, roughly 88 percent of the Brazilian population had received at least one vaccine dose, while around 81 percent had already completed the basic immunization scheme. With more than 485.2 million vaccines administered as of March 2023, Brazil was the fourth country with the most administered doses of the COVID-19 vaccine globally, after China, India, and the United States.Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.
India reported over 44 million confirmed cases of the coronavirus (COVID-19) as of October 20, 2023. The number of people infected with the virus was declining across the south Asian country.
What is the coronavirus?
COVID-19 is part of a large family of coronaviruses (CoV) that are transmitted from animals to people. The name COVID-19 is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged. Symptoms of COVID-19 resemble that of the common cold, with fever, coughing, and shortness of breath. However, serious infections can lead to pneumonia, multi-organ failure, severe acute respiratory syndrome, and even death, if appropriate medical help is not provided.
COVID-19 in India
India reported its first case of this coronavirus in late January 2020 in the southern state of Kerala. That led to a nation-wide lockdown between March and June that year to curb numbers from rising. After marginal success, the economy opened up leading to some recovery for the rest of 2020. In March 2021, however, the second wave hit the country causing record-breaking numbers of infections and deaths, crushing the healthcare system. The central government has been criticized for not taking action this time around, with "#ResignModi" trending on social media platforms in late April. The government's response was to block this line of content on the basis of fighting misinformation and reducing panic across the country.