COVID-19 Cases information is reported through the Pennsylvania State Department’s National Electronic Disease Surveillance System (PA-NEDSS). As new cases are passed to the Allegheny County Health Department they are investigated by case investigators. During investigation some cases which are initially determined by the State to be in the Allegheny County jurisdiction may change, which can account for differences between publication of the files on the number of cases, deaths and tests. Additionally, information is not always reported to the State in a timely manner, delays can range from days to weeks, which can also account for discrepancies between previous and current files. Test and Case information will be updated daily. This resource contains individuals who received a COVID-19 test and individuals whom are probable cases. Every day, these records are overwritten with updates. Each row in the data reflects a person that is tested, not tests that are conducted. People that are tested more than once will have their testing and case data updated using the following rules: Positive tests overwrite negative tests. Polymerase chain reaction (PCR) tests overwrite antibody or antigen (AG) tests. The first positive PCR test is never overwritten. Data collected from additional tests do not replace the first positive PCR test. Note: On April 4th 2022 the Pennsylvania Department of Health no longer required labs to report negative AG tests. Therefore aggregated counts that included AG tests have been removed from the Municipality/Neighborhood files going forward. Versions of this data up to this cut-off have been retained as archived files. Individual Test information is also updated daily. This resource contains the details and results of individual tests along with demographic information of the individual tested. Only PCR and AG tests are included. Every day, these records are overwritten with updates. This resource should be used to determine positivity rates. The remaining datasets provide statistics on death demographics. Demographic, municipality and neighborhood information for deaths are reported on a weekly schedule and are not included with individual cases or tests. This has been done to protect the privacy and security of individuals and their families in accordance with the Health Insurance Portability and Accountability Act (HIPAA). Municipality or City of Pittsburgh Neighborhood is based off the geocoded home address of the individual tested. Individuals whose home address is incomplete may not be in Allegheny County but whose temporary residency, work or other mitigating circumstance are determined to be in Allegheny County by the Pennsylvania Department of Health are counted as "Undefined". Since the start of the pandemic, the ACHD has mapped every day’s COVID tests, cases, and deaths to their Allegheny County municipality and neighborhood. Tests were mapped to patient address, and if this was not available, to the provider location. This has recently resulted in apparent testing rates that exceeded the populations of various municipalities -- mostly those with healthcare providers. As this was brought to our attention, the health department and our data partners began researching and comparing methods to most accurately display the data. This has led us to leave those with missing home addresses off the map. Although these data will still appear in test, case and death counts, there will be over 20,000 fewer tests and almost 1000 fewer cases on the map. In addition to these map changes, we have identified specific health systems and laboratories that had data uploading errors that resulted in missing locations, and are working with them to correct these errors. Due to minor discrepancies in the Municipal boundary and the City of Pittsburgh Neighborhood files individuals whose City Neighborhood cannot be identified are be counted as “Undefined (Pittsburgh)”.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset contains aggregate COVID-19 case counts by gender by county of first report for all counties in Pennsylvania. Counts include both confirmed and probable cases as defined by the Council of State and Territorial Epidemiologists (CSTE). Suppression applies for quantities 1-4.
Data only includes information reported to PA-NEDSS, Pennsylvania National Electronic Disease Surveillance System.
Time enabled view of Covid-19 Cases by county across PA from 3/16 to 4/20. Data Source: PA Dept of Health
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
Weekly archive of some State of Pennsylvania datasets found in this list: https://data.pa.gov/browse?q=vaccinations For most of these datasets, the "date_saved" field is the date that the WPRDC pulled the data from the state data portal and the archive combines all the saved records into one table. The exception to this is the "COVID-19 Vaccinations by Day by County of Residence Current Health (archive)" which is already published by the state as an entire history. The "date_updated" field is based on the date that the "updatedAt" field from the corresponding data.pa.gov dataset. Changes to this field have turned out to not be a good indicator of whether records have updated, which is why we are archiving this data on a weekly basis without regard to the "updatedAt" value. The "date_saved" field is the one you should sort on to see the variation in vaccinations over time. Most of the source tables have gone through schema changes or expansions. In some cases, we've kept the old archives under a separate resource with something like "[Orphaned Schema]" added to the resource name. In other cases, we've adjusted our schema to accommodate new column names, but there will be a date range during which the new columns have null values because we did not start pulling them until we became aware of them.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with historical case and percent positivity data for each county from January 22, 2020 (Weekly Historical Changes dataset) and a dataset with the levels as originally posted (Weekly Originally Posted dataset) since October 20, 2022. Please navigate to the Weekly Originally Posted dataset for the Community Transmission Levels published weekly on Thursdays.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.
This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets updated daily. The archived datasets can be found here:
Archived Originally Posted dataset
Archived Historical Changes dataset
Archived Data Notes:
October 27, 2022: Due to a processing issue this dataset will not be posted this week. CDC is currently working to address the issue and will publish the data when able.
November 10, 2022: As of 11/10/2022, this dataset will continue to incorporate historical updates made to case and percent positivity data; however, community transmission level will only be published in the corresponding Weekly COVID-19 County Level of Community Transmission as Originally Posted dataset (Weekly Originally Posted dataset).
Note:
October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases.
November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the COVID-19 Community Transmission Level data released on December 1, 2022. Therefore, the COVID-19 Community Transmission Levels may be underestimated and should be interpreted with caution.
December 22, 2022: Due to an internal revision process, case rates for some Tennessee counties may appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Tennessee counties may be overestimated and should be interpreted with caution.
December 22, 2022: Due to reporting of a backlog of historic COVID-19 cases, case rates for some Louisiana counties will appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Louisiana counties may be overestimated and should be interpreted with caution.
December 29, 2022: Due to technical difficulties, county data from Alabama could not be incorporated via standard practices. As a result, case and death metrics will be reported as 0 in the December 29, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for Alabama counties will be underestimated and should be interpreted with caution.
January 5, 2023: Due to a reporting cadence issue, case rates for all Alabama counties will be calculated based on 14 days’ worth of case count data in the COVID-19 Community Transmission Level information released on January 5, 2023, instead of the customary 7 days’ worth of case count data. Therefore, the weekly case rates will be overestimated, which could affect counties’ COVID-19 Community Transmission Level classification and should be interpreted with caution.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case metrics will appear higher than expected in the January 5, 2023, weekly release. COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case data will be reported as 0. As a result, case metrics will appear lower than expected in the January 12, 2023, weekly release. COVID-19 Community Transmission metrics may be underestimated and should be interpreted with caution.
January 13, 2023: Aggregate case data released for Los Angeles County, California for the week of December 22nd, 2022, and December 29th, 2022, have been corrected for a data processing error.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release. Therefore, COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Cumulative case counts for influenza and Respiratory Syncytial Virus (RSV) by county. Updates every Tuesday. Data contains cases reported from September 29, 2024 through the previous Saturday.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
The study assesses current practices, capacities, and needs of private health facilities in Madagascar to help prevent and actively manage COVID-19 cases. Since the first case was reported in March 2020, the government of Madagascar has directed the population to public sector health facilities for testing, screening, and care. As the number of cases continues to rise and resources remain limited, the need to involve the private sector in the COVID-19 response has grown. To do this, it is essential to understand the capacity and interest of the private health sector in the management of COVID-19 cases.
The dataset is organized into 3 folders (covid, pneumonia , normal) which contain chest X-ray posteroanterior (PA) images. X-ray samples of COVID-19 were retrieved from different sources for the unavailability of a large specific dataset. Firstly, a total 1401 samples of COVID-19 were collected using GitHub repository [1] , [2] , the Radiopaedia [3] , Italian Society of Radiology (SIRM) [4] , Figshare data repository websites [5] , [6] . Then, 912 augmented images were also collected from Mendeley instead of using data augmentation techniques explicitly [7] . Finally, 2313 samples of normal and pneumonia cases were obtained from Kaggle [8] , [9] . A total of 6939 samples were used in the experiment, where 2313 samples were used for each case.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Differences between standard GEE found in longitudinal studies and the proposed GEE.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.
Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.
In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.
This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.
The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.
Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.
The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.
To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.
To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.
To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.
As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.
Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on paro...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
COVID-19 Cases information is reported through the Pennsylvania State Department’s National Electronic Disease Surveillance System (PA-NEDSS). As new cases are passed to the Allegheny County Health Department they are investigated by case investigators. During investigation some cases which are initially determined by the State to be in the Allegheny County jurisdiction may change, which can account for differences between publication of the files on the number of cases, deaths and tests. Additionally, information is not always reported to the State in a timely manner, delays can range from days to weeks, which can also account for discrepancies between previous and current files. Test and Case information will be updated daily. This resource contains individuals who received a COVID-19 test and individuals whom are probable cases. Every day, these records are overwritten with updates. Each row in the data reflects a person that is tested, not tests that are conducted. People that are tested more than once will have their testing and case data updated using the following rules: Positive tests overwrite negative tests. Polymerase chain reaction (PCR) tests overwrite antibody or antigen (AG) tests. The first positive PCR test is never overwritten. Data collected from additional tests do not replace the first positive PCR test. Note: On April 4th 2022 the Pennsylvania Department of Health no longer required labs to report negative AG tests. Therefore aggregated counts that included AG tests have been removed from the Municipality/Neighborhood files going forward. Versions of this data up to this cut-off have been retained as archived files. Individual Test information is also updated daily. This resource contains the details and results of individual tests along with demographic information of the individual tested. Only PCR and AG tests are included. Every day, these records are overwritten with updates. This resource should be used to determine positivity rates. The remaining datasets provide statistics on death demographics. Demographic, municipality and neighborhood information for deaths are reported on a weekly schedule and are not included with individual cases or tests. This has been done to protect the privacy and security of individuals and their families in accordance with the Health Insurance Portability and Accountability Act (HIPAA). Municipality or City of Pittsburgh Neighborhood is based off the geocoded home address of the individual tested. Individuals whose home address is incomplete may not be in Allegheny County but whose temporary residency, work or other mitigating circumstance are determined to be in Allegheny County by the Pennsylvania Department of Health are counted as "Undefined". Since the start of the pandemic, the ACHD has mapped every day’s COVID tests, cases, and deaths to their Allegheny County municipality and neighborhood. Tests were mapped to patient address, and if this was not available, to the provider location. This has recently resulted in apparent testing rates that exceeded the populations of various municipalities -- mostly those with healthcare providers. As this was brought to our attention, the health department and our data partners began researching and comparing methods to most accurately display the data. This has led us to leave those with missing home addresses off the map. Although these data will still appear in test, case and death counts, there will be over 20,000 fewer tests and almost 1000 fewer cases on the map. In addition to these map changes, we have identified specific health systems and laboratories that had data uploading errors that resulted in missing locations, and are working with them to correct these errors. Due to minor discrepancies in the Municipal boundary and the City of Pittsburgh Neighborhood files individuals whose City Neighborhood cannot be identified are be counted as “Undefined (Pittsburgh)”.