28 datasets found
  1. T

    Switzerland Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). Switzerland Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/switzerland/coronavirus-cases
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Dec 15, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2019 - May 17, 2023
    Area covered
    Switzerland
    Description

    Switzerland recorded 4404327 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Switzerland reported 14008 Coronavirus Deaths. This dataset includes a chart with historical data for Switzerland Coronavirus Cases.

  2. Confirmed coronavirus (COVID-19) cases in Switzerland in 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Confirmed coronavirus (COVID-19) cases in Switzerland in 2023 [Dataset]. https://www.statista.com/statistics/1107053/coronavirus-covid-19-cases-switzerland/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Switzerland
    Description

    Switzerland has been recording coronavirus (COVID-19) case numbers across the country since the end of February 2020. As of January 2023, there were 4,383,648 confirmed cases.

  3. Latest Coronavirus COVID-19 figures for Switzerland

    • covid19-today.pages.dev
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Worldometers (2025). Latest Coronavirus COVID-19 figures for Switzerland [Dataset]. https://covid19-today.pages.dev/countries/switzerland/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Worldometershttps://dadax.com/
    CSSE at JHU
    License

    https://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE

    Area covered
    Switzerland
    Description

    In past 24 hours, Switzerland, Europe had N/A new cases, N/A deaths and N/A recoveries.

  4. Coronavirus (COVID-19) cases in Switzerland by canton in 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Coronavirus (COVID-19) cases in Switzerland by canton in 2023 [Dataset]. https://www.statista.com/statistics/1107224/coronavirus-covid-19-switzerland-by-canton/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Switzerland
    Description

    The coronavirus (COVID-19) has severely affected Switzerland. Based on current figures from January 2023, of all the Swiss cantons, Zürich has the highest number of confirmed cases, followed by Bern.

  5. y

    Switzerland Coronavirus Cases Per Day

    • ycharts.com
    html
    Updated Nov 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins Center for Systems Science and Engineering (2025). Switzerland Coronavirus Cases Per Day [Dataset]. https://ycharts.com/indicators/switzerland_coronavirus_cases_per_day
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 9, 2025
    Dataset provided by
    YCharts
    Authors
    Johns Hopkins Center for Systems Science and Engineering
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 23, 2020 - Mar 9, 2023
    Area covered
    Switzerland
    Variables measured
    Switzerland Coronavirus Cases Per Day
    Description

    View daily updates and historical trends for Switzerland Coronavirus Cases Per Day. Source: Johns Hopkins Center for Systems Science and Engineering. Trac…

  6. Coronavirus (COVID-19) infection rate in Switzerland 2023, per 100,000...

    • statista.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Coronavirus (COVID-19) infection rate in Switzerland 2023, per 100,000 people [Dataset]. https://www.statista.com/statistics/1107264/coronavirus-covid-19-infection-rate-per-100000-people-switzerland/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Switzerland
    Description

    The coronavirus (COVID-19) pandemic has impacted life in Switzerland. With confirmed cases of illness across the country, as of January 2023, Ticino had the highest infection rate per 100,000 inhabitants, followed by Graubünden.

  7. o

    COVID-19 Pandemic - CH/Switzerland

    • dashboardcovid.trial.opendatasoft.com
    csv, excel, geojson +1
    Updated Mar 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). COVID-19 Pandemic - CH/Switzerland [Dataset]. https://dashboardcovid.trial.opendatasoft.com/explore/dataset/covid-19-pandemic-chswitzerland/
    Explore at:
    geojson, csv, json, excelAvailable download formats
    Dataset updated
    Mar 30, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Description

    This dataset is based on the Github repository maintained by OpenZH. Data has been enriched with geographical data for the cantons, in order to produce visualisations.Field NameDescriptionFormatNote

    updateDate and time of notification YYYY-MM-DD-HH-MM

    nameName of the reporting cantonTextabbreviation_canton_and_fl Abbreviation of the reporting canton

    Text

    ncumul_testedReported number of tests performed as of dateNumberIrrespective of canton of residence

    ncumul_confReported number of confirmed cases as of dateNumberOnly cases that reside in the current canton

    current_hosp (formerly ncumul_hosp) *Reported number of hospitalised patients on dateNumberIrrespective of canton of residencecurrent_icu (formerly ncumul_icu) *Reported number of hospitalised patients in ICUs on dateNumberIrrespective of canton of residencecurrent_vent(formerly ncumul_vent) *Reported number of patients requiring ventilation on dateNumberIrrespective of canton of residencencumul_released Reported number of patients released from hospitals or reported recovered as of date

    NumberIrrespective of canton of residence

    ncumul_deceasedReported number of deceased as of dateNumberOnly cases that reside in the current cantonnew_hosp *Number of new hospitalisations since last dateNumberIrrespective of canton of residence

    sourceSource of the informationURL linkgeo_point_2dGeographical centroid of the cantongeo_point_2dcurrent_isolatedReported number of isolated persons on dateNumberInfected persons, who are not hospitalisedcurrent_quarantinedReported number of quarantined persons on dateNumberPersons, who were in 'close contact' with an infected person, while that person was infectious, and are not hospitalised themselvescurrent_quarantined_riskareatravelReported number of quarantined persons on dateNumberPeople arriving in Switzerland from certain countries and areas, required to go into quarantine (introduced in May 2021)*These variables were affected by the format change on April 9th, 2020, which consists in:- new variable "new_hosp"- variables "ncumul_hosp", "ncumul_icu", "ncumul_vent" have been renamed to "current_hosp", "current_icu", "current_vent", to fit with their nature. To ensure compatibility with already made dashboards or reuses, these fields have been duplicated to avoid errors when their old names are used; but we strongly recommand to replace their old names by the new as soon as possible.

  8. Novel Covid-19 Dataset

    • kaggle.com
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GHOST5612 (2025). Novel Covid-19 Dataset [Dataset]. https://www.kaggle.com/datasets/ghost5612/novel-covid-19-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    GHOST5612
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context:

    From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.

    So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.

    Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.

    Edited:

    Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.

    Content

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.

    The data is available from 22 Jan, 2020.

    Here’s a polished version suitable for a professional Kaggle dataset description:

    Dataset Description

    This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.

    Files and Columns

    1. covid_19_data.csv (Main File)

    This is the primary dataset and contains aggregated COVID-19 statistics by location and date.

    • Sno – Serial number of the record
    • ObservationDate – Date of the observation (MM/DD/YYYY)
    • Province/State – Province or state of the observation (may be missing for some entries)
    • Country/Region – Country of the observation
    • Last Update – Timestamp (UTC) when the record was last updated (not standardized, requires cleaning before use)
    • Confirmed – Cumulative number of confirmed cases on that date
    • Deaths – Cumulative number of deaths on that date
    • Recovered – Cumulative number of recoveries on that date

    2. 2019_ncov_data.csv (Legacy File)

    This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.

    3. COVID_open_line_list_data.csv

    This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.

    4. COVID19_line_list_data.csv

    Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.

    ✅ Use covid_19_data.csv for up-to-date aggregated global trends.

    ✅ Use the line list datasets for detailed, individual-level case analysis.

    Country level datasets:

    If you are interested in knowing country level data, please refer to the following Kaggle datasets:

    India - https://www.kaggle.com/sudalairajkumar/covid19-in-india

    South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset

    Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy

    Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil

    USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa

    Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland

    Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases

    Acknowledgements :

    Johns Hopkins University for making the data available for educational and academic research purposes

    MoBS lab - https://www.mobs-lab.org/2019ncov.html

    World Health Organization (WHO): https://www.who.int/

    DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.

    BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/

    National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

    China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm

    Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html

    Macau Government: https://www.ssm.gov.mo/portal/

    Taiwan CDC: https://sites.google....

  9. g

    COVID-19 Switzerland

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 Switzerland [Dataset]. https://gimi9.com/dataset/eu_covid-19-bundesamt-fur-gesundheit-bag
    Explore at:
    Area covered
    Switzerland
    Description

    Key figures on laboratory-confirmed cases, hospitalisations, deaths, tests, vaccinations, relevant virus variants, Re values, contact tracing (isolation and quarantine), hospital capacity and the international situation. ### Documentation - data documentation - release notes - data context API

  10. S

    Switzerland WHO: COVID-2019: No of Patients: Death: To-Date: Switzerland

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Switzerland WHO: COVID-2019: No of Patients: Death: To-Date: Switzerland [Dataset]. https://www.ceicdata.com/en/switzerland/world-health-organization-coronavirus-disease-2019-covid2019-by-country-and-region/who-covid2019-no-of-patients-death-todate-switzerland
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 8, 2023 - Dec 19, 2023
    Area covered
    Switzerland
    Description

    WHO: COVID-2019: Number of Patients: Death: To-Date: Switzerland data was reported at 14,142.000 Person in 24 Dec 2023. This stayed constant from the previous number of 14,142.000 Person for 23 Dec 2023. WHO: COVID-2019: Number of Patients: Death: To-Date: Switzerland data is updated daily, averaging 12,284.000 Person from Feb 2020 (Median) to 24 Dec 2023, with 1400 observations. The data reached an all-time high of 14,142.000 Person in 24 Dec 2023 and a record low of 0.000 Person in 05 Mar 2020. WHO: COVID-2019: Number of Patients: Death: To-Date: Switzerland data remains active status in CEIC and is reported by World Health Organization. The data is categorized under High Frequency Database’s Disease Outbreaks – Table WHO.D002: World Health Organization: Coronavirus Disease 2019 (COVID-2019): by Country and Region (Discontinued). Due to some inclusions and exclusions of cases that are not properly reflected in WHO report, which are the result of the retrospective adjustments of national authorities, some current day “To-date” figures will not tally to the sum of previous day “To-date” cases and current day new reported cases. Figures with excluded cases are relatively lower compared to the previous day.

  11. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  12. n

    Counts of COVID-19 reported in SWITZERLAND: 2019-2021

    • data.niaid.nih.gov
    • catalog.midasnetwork.us
    • +2more
    csv
    Updated Aug 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harry Hochheiser; Willem Van Panhuis; Bruce Childers; Mark Roberts; Kim Wong; J Espino; William Hogan; M Halloran; Nicholas Reich; Lauren Meyers (2022). Counts of COVID-19 reported in SWITZERLAND: 2019-2021 [Dataset]. http://doi.org/10.25337/T7/ptycho.v2.0/CH.840539006
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 12, 2022
    Dataset provided by
    MIDAS Coordination Center
    Authors
    Harry Hochheiser; Willem Van Panhuis; Bruce Childers; Mark Roberts; Kim Wong; J Espino; William Hogan; M Halloran; Nicholas Reich; Lauren Meyers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Switzerland, Switzerland
    Variables measured
    Case, Dead, Cumulative incidence, Count of disease cases, Infectious disease incidence
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.

  13. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  14. Coronavirus - Brazil

    • kaggle.com
    zip
    Updated May 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raphael Fontes (2021). Coronavirus - Brazil [Dataset]. https://www.kaggle.com/unanimad/corona-virus-brazil
    Explore at:
    zip(28229387 bytes)Available download formats
    Dataset updated
    May 24, 2021
    Authors
    Raphael Fontes
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Brazil
    Description

    Please, If you enjoyed this dataset, don't forget to upvote it.

    Content

    From Novel Corona Virus 2019 Dataset:

    2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC

    This dataset has information on the number of cases in Brazil. Please note that this is a time series data and so the number of cases on any given day is a cumulative number.

    The data is available from Jan/30/2020, when the first suspect case appeared in Brazil.

    Acknowledgements

    1. Avisos/Advertising - Please, before start working with this data, take a break to read this discussion.
    2. Plataforma COVID Brazil - Public platform to share informations about the COVID-19 cases in Brazil.

    Country level datasets

    If you are interested in know about another country, please follow these Kaggle datasets:

    Inspiration

    1. Changes in number of cases over time
    2. Change in cases over time at state level
  15. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  16. f

    Table_1_Internet usage, frequency and intensity in old age during the...

    • frontiersin.figshare.com
    docx
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ronny König; Alexander Seifert (2023). Table_1_Internet usage, frequency and intensity in old age during the COVID-19 pandemic—a case study for Switzerland.DOCX [Dataset]. http://doi.org/10.3389/fsoc.2023.1268613.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Frontiers
    Authors
    Ronny König; Alexander Seifert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Switzerland
    Description

    IntroductionThis study examines the digital divide among older adults in Switzerland within the rapidly evolving digital environment. It investigates changes in internet usage among this population, focusing on the proportion of users, frequency, and the intensity of their internet usage during the COVID-19 pandemic.MethodsDrawing on Swiss data from the Survey of Health, Aging, and Retirement (SHARE), conducted in 2021, the study analyzes a sample of 1,205 older adults.ResultsThe findings indicate a growing proportion of internet users over time. It also highlights that gender differences persist but are decreasing. Notably, around 9% of individuals in this study had never used the internet, while recent users exhibited high activity levels, spending an average of approximately two and a half hours online daily. The study identified age, education, employment, living arrangements, and attitudes toward technology as influential factors shaping internet usage among older adults. Importantly, the COVID-19 pandemic did not have a significant impact on internet adoption among this demographic.DiscussionThese findings shed light on the complex dynamics that shape internet usage among older adults and underscore the need to promote digital inclusion and engagement within this population.

  17. Pandemic Border Discourses Dataset and Codebook - Swiss Case

    • zenodo.org
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie-Eve Bélanger; Marie-Eve Bélanger; Sandra Lavenex; Sandra Lavenex (2024). Pandemic Border Discourses Dataset and Codebook - Swiss Case [Dataset]. http://doi.org/10.5281/zenodo.6619705
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marie-Eve Bélanger; Marie-Eve Bélanger; Sandra Lavenex; Sandra Lavenex
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Pandemic Border Discourses project identifies and compares the evolution of discourses restricting internal and external mobility in Europe as the Covid-19 pandemic is unfolding. It is designed to show how political actors use discourses to justify their decisions in emergency situations, and analyse whether and how unforeseen systemic pressure disrupts bordering discourses and practices. It contributes to a better understanding of the political, social and economic issues driving policy decision in times of crisis, above all the tension between national interest and transnational solidarity.

    This coding manual explains our data collection strategy and introduces the variables of the dataset. Building on a core-sentence analysis method, we collect and analyse institutional discourses about mobility during the Covid-19 crisis on Twitter.

  18. COVID-19: The First Global Pandemic of the Information Age

    • cameroon.africageoportal.com
    Updated Apr 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19: The First Global Pandemic of the Information Age [Dataset]. https://cameroon.africageoportal.com/datasets/UrbanObservatory::covid-19-the-first-global-pandemic-of-the-information-age
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.-- Esri COVID-19 Trend Report for 3-9-2023 --0 Countries have Emergent trend with more than 10 days of cases: (name : # of active cases) 41 Countries have Spreading trend with over 21 days in new cases curve tail: (name : # of active cases)Monaco : 13, Andorra : 25, Marshall Islands : 52, Kyrgyzstan : 79, Cuba : 82, Saint Lucia : 127, Cote d'Ivoire : 148, Albania : 155, Bosnia and Herzegovina : 172, Iceland : 196, Mali : 198, Suriname : 246, Botswana : 247, Barbados : 274, Dominican Republic : 304, Malta : 306, Venezuela : 334, Micronesia : 346, Uzbekistan : 356, Afghanistan : 371, Jamaica : 390, Latvia : 402, Mozambique : 406, Kosovo : 412, Azerbaijan : 427, Tunisia : 528, Armenia : 594, Kuwait : 716, Thailand : 746, Norway : 768, Croatia : 847, Honduras : 1002, Zimbabwe : 1067, Saudi Arabia : 1098, Bulgaria : 1148, Zambia : 1166, Panama : 1300, Uruguay : 1483, Kazakhstan : 1671, Paraguay : 2080, Ecuador : 53320 Countries may have Spreading trend with under 21 days in new cases curve tail: (name : # of active cases)61 Countries have Epidemic trend with over 21 days in new cases curve tail: (name : # of active cases)Liechtenstein : 48, San Marino : 111, Mauritius : 742, Estonia : 761, Trinidad and Tobago : 1296, Montenegro : 1486, Luxembourg : 1540, Qatar : 1541, Philippines : 1915, Ireland : 1946, Brunei : 2010, United Arab Emirates : 2013, Denmark : 2111, Sweden : 2149, Finland : 2154, Hungary : 2169, Lebanon : 2208, Bolivia : 2838, Colombia : 3250, Switzerland : 3321, Peru : 3328, Slovakia : 3556, Malaysia : 3608, Indonesia : 3793, Portugal : 4049, Cyprus : 4279, Argentina : 5050, Iran : 5135, Lithuania : 5323, Guatemala : 5516, Slovenia : 5689, South Africa : 6604, Georgia : 7938, Moldova : 8082, Israel : 8746, Bahrain : 8932, Netherlands : 9710, Romania : 12375, Costa Rica : 12625, Singapore : 13816, Serbia : 14093, Czechia : 14897, Spain : 17399, Ukraine : 19568, Canada : 24913, New Zealand : 25136, Belgium : 30599, Poland : 38894, Chile : 41055, Australia : 50192, Mexico : 65453, United Kingdom : 65697, France : 68318, Italy : 70391, Austria : 90483, Brazil : 134279, Korea - South : 209145, Russia : 214935, Germany : 257248, Japan : 361884, US : 6440500 Countries may have Epidemic trend with under 21 days in new cases curve tail: (name : # of active cases) 54 Countries have Controlled trend: (name : # of active cases)Palau : 3, Saint Kitts and Nevis : 4, Guinea-Bissau : 7, Cabo Verde : 8, Mongolia : 8, Benin : 9, Maldives : 10, Comoros : 10, Gambia : 12, Bhutan : 14, Cambodia : 14, Syria : 14, Seychelles : 15, Senegal : 16, Libya : 16, Laos : 17, Sri Lanka : 19, Congo (Brazzaville) : 19, Tonga : 21, Liberia : 24, Chad : 25, Fiji : 26, Nepal : 27, Togo : 30, Nicaragua : 32, Madagascar : 37, Sudan : 38, Papua New Guinea : 38, Belize : 59, Egypt : 60, Algeria : 64, Burma : 65, Ghana : 72, Haiti : 74, Eswatini : 75, Guyana : 79, Rwanda : 83, Uganda : 88, Kenya : 92, Burundi : 94, Angola : 98, Congo (Kinshasa) : 125, Morocco : 125, Bangladesh : 127, Tanzania : 128, Nigeria : 135, Malawi : 148, Ethiopia : 248, Vietnam : 269, Namibia : 422, Cameroon : 462, Pakistan : 660, India : 4290 41 Countries have End Stage trend: (name : # of active cases)Sao Tome and Principe : 1, Saint Vincent and the Grenadines : 2, Somalia : 2, Timor-Leste : 2, Kiribati : 8, Mauritania : 12, Oman : 14, Equatorial Guinea : 20, Guinea : 28, Burkina Faso : 32, North Macedonia : 351, Nauru : 479, Samoa : 554, China : 2897, Taiwan* : 249634 -- SPIKING OF NEW CASE COUNTS --20 countries are currently experiencing spikes in new confirmed cases:Armenia, Barbados, Belgium, Brunei, Chile, Costa Rica, Georgia, India, Indonesia, Ireland, Israel, Kuwait, Luxembourg, Malaysia, Mauritius, Portugal, Sweden, Ukraine, United Kingdom, Uzbekistan 20 countries experienced a spike in new confirmed cases 3 to 5 days ago: Argentina, Bulgaria, Croatia, Czechia, Denmark, Estonia, France, Korea - South, Lithuania, Mozambique, New Zealand, Panama, Poland, Qatar, Romania, Slovakia, Slovenia, Switzerland, Trinidad and Tobago, United Arab Emirates 47 countries experienced a spike in new confirmed cases 5 to 14 days ago: Australia, Austria, Bahrain, Bolivia, Brazil, Canada, Colombia, Congo (Kinshasa), Cyprus, Dominican Republic, Ecuador, Finland, Germany, Guatemala, Honduras, Hungary, Iran, Italy, Jamaica, Japan, Kazakhstan, Lebanon, Malta, Mexico, Micronesia, Moldova, Montenegro, Netherlands, Nigeria, Pakistan, Paraguay, Peru, Philippines, Russia, Saint Lucia, Saudi Arabia, Serbia, Singapore, South Africa, Spain, Suriname, Thailand, Tunisia, US, Uruguay, Zambia, Zimbabwe 194 countries experienced a spike in new confirmed cases over 14 days ago: Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burma, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo (Brazzaville), Congo (Kinshasa), Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cyprus, Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Korea - South, Kosovo, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan*, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Tuvalu, US, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, West Bank and Gaza, Yemen, Zambia, Zimbabwe Strongest spike in past two days was in US at 64,861 new cases.Strongest spike in past five days was in US at 64,861 new cases.Strongest spike in outbreak was 424 days ago in US at 1,354,505 new cases. Global Total Confirmed COVID-19 Case Rate of 8620.91 per 100,000Global Active Confirmed COVID-19 Case Rate of 37.24 per 100,000Global COVID-19 Mortality Rate of 87.69 per 100,000 21 countries with over 200 per 100,000 active cases.5 countries with over 500 per 100,000 active cases.3 countries with over 1,000 per 100,000 active cases.1 country with over 2,000 per 100,000 active cases.Nauru is worst at 4,354.54 per 100,000.

  19. High-demand food products during the coronavirus (COVID-19) in Switzerland...

    • statista.com
    Updated Mar 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). High-demand food products during the coronavirus (COVID-19) in Switzerland 2020 [Dataset]. https://www.statista.com/statistics/1110386/coronavirus-covid-19-food-products-demand-switzerland/
    Explore at:
    Dataset updated
    Mar 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 16, 2020 - Mar 22, 2020
    Area covered
    Switzerland
    Description

    The coronavirus (COVID-19) outbreak of 2020 in Switzerland has led to signficantly increased demand for certain food products among the population, in the attempt to stock up in case of extended quarantine. The demand for flour and rice was particularly high as of March 2020.

  20. d

    MOSAiCH COVID-19. Measurement and Observation of Social Attitudes in...

    • doi.org
    • swissubase.ch
    Updated Jun 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). MOSAiCH COVID-19. Measurement and Observation of Social Attitudes in Switzerland 2020. Study on Environment and related topics - COVID-19 complement Wave 1+2+3_BETA Version [Dataset]. http://doi.org/10.23662/FORS-DS-1206-3
    Explore at:
    Dataset updated
    Jun 25, 2021
    Description

    The dataset also includes information from the first part of the MOSAiCH 2020 survey, namely sociodemographic information and some attitudinal questions of interest for the COVID-19 survey such as repeated questions.

    Be aware that this is a BETA version. There still might be errors and the number of cases is not final. Please notify us of any error you see. Thank you for your help.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2021). Switzerland Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/switzerland/coronavirus-cases

Switzerland Coronavirus COVID-19 Cases

Switzerland Coronavirus COVID-19 Cases - Historical Dataset (2019-12-31/2023-05-17)

Explore at:
csv, excel, xml, jsonAvailable download formats
Dataset updated
Dec 15, 2021
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 31, 2019 - May 17, 2023
Area covered
Switzerland
Description

Switzerland recorded 4404327 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Switzerland reported 14008 Coronavirus Deaths. This dataset includes a chart with historical data for Switzerland Coronavirus Cases.

Search
Clear search
Close search
Google apps
Main menu